Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneous rotations in epithelia as an interplay between cell polarity and boundaries

Abstract

Directional flows of cells have been observed during development in a variety of systems ranging from Drosophila to zebrafish. These flows shape living matter in phenomena involving cell mechanics and regulation of the acto-myosin cytoskeleton and are important for morphogenesis. However, the onset of the observed coherent motion is still poorly understood. Here we identify the inherent coherence length to show that coherence is associated with spontaneous alignments of cell polarity. We use cellular rings of controlled dimensions and live tracking of cellular shapes and motions under various experimental conditions, finding that a tug-of-war between cell polarities within the ring dictates the onset of coherence. In addition, we identify an internally driven constraint set by cellular acto-myosin cables at the inner and outer ring boundaries. As these structures have a high RhoA protein activity, they confine the cells and are essential to ensure coherence. The finding that acto-myosin cables are required to trigger coherence is supported by numerical simulations based on a Vicsek-type model that includes free active boundaries. We quantitatively reproduce coherence onsets. We propose that spontaneous coherent motion results from basic competitions between cell orientations and active cables at boundaries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Acquisition of coherent motion.
Fig. 2: Cell polarity and density determine dynamics of coherent motion.
Fig. 3: Acto-myosin cables as internally driven constraints.
Fig. 4: RhoA activity correlates with different ring behaviours.
Fig. 5: Emergence of coherence in silico.
Fig. 6: Theory predicts ring behaviours.

Similar content being viewed by others

Data availability

All data can be provided upon request to riveline@unistra.fr and laurent.navoret@math.unistra.fr.

Code availability

Python codes can be provided upon request to laurent.navoret@math.unistra.fr.

References

  1. Munjal, A., Philippe, J. M., Munro, E. & Lecuit, T. A self-organized biomechanical network drives shape changes during tissue morphogenesis. Nature 524, 351–355 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Nishikawa, M., Naganathan, S. R., Jülicher, F. & Grill, S. W. Controlling contractile instabilities in the actomyosin cortex. eLife 6, e19595 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sit, S. T. & Manser, E. Rho GTPases and their role in organizing the actin cytoskeleton. J. Cell Sci. 124, 679–683 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Ridley, A. J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Comelles, J. et al. Epithelial colonies in vitro elongate through collective effects. eLife 10, e57730 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yam, P. T. et al. Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol. 178, 1207–1221 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arboleda-Estudillo, Y. et al. Movement directionality in collective migration of germ layer progenitors. Curr. Biol. 20, 161–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Jain, A. et al. Regionalized tissue fluidization is required for epithelial gap closure during insect gastrulation. Nat. Commun. 11, 5604 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Münster, S. et al. Attachment of the blastoderm to the vitelline envelope affects gastrulation of insects. Nature 568, 395–399 (2019).

    Article  PubMed  ADS  Google Scholar 

  10. Cetera, M. et al. Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation. Nat. Commun. 5, 5511 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Haigo, S. L. & Bilder, D. Global tissue revolutions in a morphogenetic movement controlling elongation. Sci. 331, 1071–1074 (2011).

    Article  CAS  ADS  Google Scholar 

  12. Wang, H., Lacoche, S., Huang, L., Xue, B. & Muthuswamy, S. K. Rotational motion during three-dimensional morphogenesis of mammary epithelial acini relates to laminin matrix assembly. Proc. Natl Acad. Sci. USA 110, 163–168 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Tanner, K., Mori, H., Mroue, R., Bruni-Cardoso, A. & Bissell, M. J. Coherent angular motion in the establishment of multicellular architecture of glandular tissues. Proc. Natl Acad. Sci. USA 109, 1973–1978 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Selmeczi, D., Mosler, S., Hagedorn, P. H., Larsen, N. B. & Flyvbjerg, H. Cell motility as persistent random motion: theories from experiments. Biophys. J. 89, 912–931 (2005).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Vedula, S. R. K. et al. Emerging modes of collective cell migration induced by geometrical constraints. Proc. Natl Acad. Sci. USA 109, 12974–12979 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Ladoux, B. & Mège, R. M. Mechanobiology of collective cell behaviours. Nat. Rev. Mol. Cell Biol. 18, 743–757 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Reffay, M. et al. Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nat. Cell Biol. 16, 217–223 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Pertz, O., Hodgson, L., Klemke, R. L. & Hahn, K. M. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440, 1069–1072 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. 237, 37–72 (1952).

    MathSciNet  ADS  Google Scholar 

  20. Jain, S. et al. The role of single-cell mechanical behaviour and polarity in driving collective cell migration. Nat. Phys. 16, 802–809 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deforet, M., Hakim, V., Yevick, H. G., Duclos, G. & Silberzan, P. Emergence of collective modes and tri-dimensional structures from epithelial confinement. Nat. Commun. 5, 3747 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Doxzen, K. et al. Guidance of collective cell migration by substrate geometry. Integr. Biol. 5, 1026–1035 (2013).

    Article  CAS  Google Scholar 

  23. Petitjean, L. et al. Velocity fields in a collectively migrating epithelium. Biophys. J. 98, 1790–1800 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Chin, A. S. et al. Epithelial cell chirality revealed by three-dimensional spontaneous rotation. Proc. Natl Acad. Sci. USA 115, 12188–12193 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Tee, Y. H. et al. Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat. Cell Biol. 17, 445–457 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Nier, V. et al. Tissue fusion over nonadhering surfaces. Proc. Natl Acad. Sci. USA 112, 9546–9551 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Ravasio, A. et al. Regulation of epithelial cell organization by tuning cell-substrate adhesion. Integr. Biol. 7, 1228–1241 (2015).

    Article  CAS  Google Scholar 

  28. Ravasio, A. et al. Gap geometry dictates epithelial closure efficiency. Nat. Commun. 6, 7683 (2015).

    Article  PubMed  ADS  Google Scholar 

  29. Mayer, M., Depken, M., Bois, J. S., Jülicher, F. & Grill, S. W. Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 467, 617–621 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Helfman, D. M. et al. Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions. Mol. Biol. Cell 10, 3097–3112 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Hodgson, L., Shen, F. & Hahn, K. Biosensors for characterizing the dynamics of Rho family GTPases in living cells. Curr. Protoc. Cell Biol. 46, 14111–141126 (2010).

    Article  Google Scholar 

  33. MacHacek, M. et al. Coordination of Rho GTPase activities during cell protrusion. Nature 461, 99–103 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Segerer, F. J., Thüroff, F., Piera Alberola, A., Frey, E. & Rädler, J. O. Emergence and persistence of collective cell migration on small circular micropatterns. Phys. Rev. Lett. 114, 228102 (2015).

    Article  PubMed  ADS  Google Scholar 

  35. Zorn, M. L., Marel, A. K., Segerer, F. J. & Rädler, J. O. Phenomenological approaches to collective behavior in epithelial cell migration. Biochim. Biophys. Acta - Mol. Cell Res. 1853, 3143–3152 (2015).

    Article  CAS  Google Scholar 

  36. Soumya, S. S. et al. Coherent motion of monolayer sheets under confinement and its pathological implications. PLoS Comput. Biol. 11, e1004670 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Naganathan, S. R. A., Fürthauer, S., Nishikawa, M., Jülicher, F. & Grill, S. W. Active torque generation by the actomyosin cell cortex drives left-right symmetry breaking. eLife 3, e04165 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tee, Y. H. et al. Actin polymerisation and crosslinking drive left-right asymmetry in single cell and cell collectives. Nat. Commun. 14, 776 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Sepúlveda, N. et al. Collective cell motion in an epithelial sheet can be quantitatively described by a stochastic interacting particle model. PLoS Comput. Biol. 9, e1002944 (2013).

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  40. Balcioglu, H. E. et al. A subtle relationship between substrate stiffness and collective migration of cell clusters. Soft Matter 16, 1825–1839 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Garcia, S. et al. Physics of active jamming during collective cellular motion in a monolayer. Proc. Natl Acad. Sci. USA 112, 15314–15319 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Gupta, S. et al. Enhanced RhoA signalling stabilizes E-cadherin in migrating epithelial monolayers. J. Cell Sci. 17, 258767 (2021).

    Article  Google Scholar 

  43. Juan, G. R. R., Oakes, P. W. & Gardel, M. L. Contact guidance requires spatial control of leading-edge protrusion. Mol. Biol. Cell 28, 1043–1053 (2017).

    Article  Google Scholar 

  44. Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Chougule, A. et al. The Drosophila actin nucleator DAAM is essential for left-right asymmetry. PLoS Genet. 16, e1008758 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maitra, A. & Lenz, M. Spontaneous rotation can stabilise ordered chiral active fluids. Nat. Commun. 10, 920 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  47. Beutel, O., Maraspini, R., Pombo-García, K., Martin-Lemaitre, C. & Honigmann, A. Phase separation of zonula occludens proteins drives formation of tight junctions. Cell 179, 923–936.e11 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Etournay, R. et al. TissueMiner: a multiscale analysis toolkit to quantify how cellular processes create tissue dynamics. eLife 5, e14334 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Van Unen and M. Inamdar for discussion and feedback. We also thank A. Honigmann (Biotechnology Center, Technical University Dresden) for kindly sharing the ZO1-GFP MDCK cell line, the Imaging Platform of IGBMC, and the Riveline Laboratory for help and discussions. S.L.V. is supported by the University of Strasbourg and by la Fondation pour la Recherche Médicale. D.R., M.S. and L.N. acknowledge support from Idex Unistra and from the Cell Physics Master at the University of Strasbourg. O.P. and D.R. thank funding from SNSF Sinergia grant CRSII5_183550. This work was also supported by a Research Grant from HFSP (Ref. No: RGP0050/2018) and by a French state fund through the Agence Nationale de la Recherche under the frame programme Investissements d’avenir labelled ANR-10-IDEX-0002-02.

Author information

Authors and Affiliations

Authors

Contributions

D.R. conceived and supervised the project. S.L.V. performed experiments and analysed the data with D.R. M.S. and L.N. conceived the theoretical framework and ran numerical simulations in close interactions with D.R. and S.L.V. O.P. provided the FRET biosensor and molecular tools to generate cell lines. D.R. and S.L.V wrote the article with feedback from all co-authors. M.S. and L.N. wrote the mathematical modelling section in the Supplementary Information.

Corresponding authors

Correspondence to L. Navoret or D. Riveline.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Guillermo Gomez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Table 1 and Discussion.

Reporting Summary

Supplementary Video 1

1,000 µm MDCK ring in phase contrast. Time in hh:mm.

Supplementary Video 2

300 µm MDCK ring in phase contrast. Time in hh:mm.

Supplementary Video 3

180 µm MDCK ring in phase contrast. Time in hh:mm.

Supplementary Video 4

80 µm MDCK ring in phase contrast. Time in hh:mm.

Supplementary Video 5

MDCK ZO1-GFP 80 µm ring in phase contrast. Time in hh:mm.

Supplementary Video 6

Laser ablation on acto-myosin cable (green—GFP). Ring diameter = 80 µm. Time in mm:ss.

Supplementary Video 7

Lifeact transfected cell within the ring ‘building’ the acto-myosin cable (80 µm). Time in hh:mm. Scale bar, 50 µm.

Supplementary Video 8

Caldesmon transfected cell (green—GFP) migrating outwards the 80 µm ring. Time in hh:mm.

Supplementary Video 9

RhoA FRET biosensor spatiotemporal distribution. Ring diameter = 80 µm. Time in hh:mm.

Supplementary Video 10

80 µm simulation.

Supplementary Video 11

180 µm simulation.

Supplementary Video 12

300 µm simulation.

Supplementary Video 13

1,000 µm simulation.

Supplementary Video 14

Caldesmon simulation. The transfected cell corresponds to the blue particle in the simulation. Ring diameter = 80 µm.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo Vecchio, S., Pertz, O., Szopos, M. et al. Spontaneous rotations in epithelia as an interplay between cell polarity and boundaries. Nat. Phys. 20, 322–331 (2024). https://doi.org/10.1038/s41567-023-02295-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02295-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing