Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-affine atomic rearrangement of glasses through stress-induced structural anisotropy

Abstract

The atomic-scale structural rearrangement of glasses on applied stress is central to the understanding of their macroscopic mechanical properties and behaviour. However, experimentally resolving the atomic-scale structural changes of a deformed glass remains challenging due to the disordered nature of the glass structure. Conventional structural analyses such as X-ray diffraction are based on the assumption of structural isotropy and hence cannot discern the subtle atomic-scale structural rearrangement induced by deformation. Here we show that structural anisotropy correlates with non-affine atomic displacements—meaning those that do not preserve parallel lines in the atomic structure—in various types of glass. This serves as an approach for identifying the atomic-scale non-affine deformation in glasses. We also uncover the atomic-level mechanism responsible for plastic flow, which differs between metallic glasses and covalent glasses. The non-affine structural rearrangements in metallic glasses are mediated through the stretching or contraction of atomic bonds. The non-affinity of covalent glasses that occurs in a less localized manner is mediated through the rotation of atomic bonds or chains without changing the bond length. These findings provide key ingredients for exploring the atomic-scale process governing the macroscopic deformation of amorphous solids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of detecting and characterizing the anisotropic structure for glasses after creep.
Fig. 2: Comparison of experimentally observed anisotropic PDF to theoretically fitted anisotropic PDF, and to observed isotropic PDF for the studied glasses after creep deformation.
Fig. 3: Correlations of structural anisotropy with non-affine deformation and changes in bonds for deformed metallic and polymer glasses in simulations.
Fig. 4: Unveiled deformation mechanisms of metallic and polymer glasses in simulations.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available via Figshare at https://doi.org/10.6084/m9.figshare.23515368. Source data are provided with this paper.

Code availability

Code data are available from the corresponding authors upon reasonable request.

References

  1. Bourhis, E. L. Glass: Mechanics and Technology (John Wiley & Sons, 2014).

  2. Ernsberger, F. M. Mechanical properties of glass. J. Non-Cryst. Solids 25, 293–321 (1977).

    ADS  Google Scholar 

  3. Morgan, R. J. & O’Neal, J. E. The mechanical properties of polymer glasses. Polym. Plast. Technol. 5, 173–197 (1975).

    Google Scholar 

  4. Schuh, C. A., Hufnagel, T. C. & Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007).

    ADS  Google Scholar 

  5. Greer, A. L., Cheng, Y. Q. & Ma, E. Shear bands in metallic glasses. Mat. Sci. Eng. R 74, 71–132 (2013).

    Google Scholar 

  6. Yavari, A. R., Lewandowski, J. J. & Eckert, J. Mechanical properties of bulk metallic glasses. MRS Bull. 32, 635–638 (2011).

    Google Scholar 

  7. Wondraczek, L. Overcoming glass brittleness. Science 366, 804–805 (2019).

    ADS  Google Scholar 

  8. Hofmann, D. C. et al. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085–1089 (2008).

    ADS  Google Scholar 

  9. Sarac, B. & Schroers, J. Designing tensile ductility in metallic glasses. Nat. Commun. 4, 2158 (2013).

    ADS  Google Scholar 

  10. Hirata, A. et al. Direct observation of local atomic order in a metallic glass. Nat. Mater. 10, 28–33 (2011).

    ADS  Google Scholar 

  11. Chen, D. Z. et al. Fractal atomic-level percolation in metallic glasses. Science 349, 1306–1310 (2015).

    ADS  Google Scholar 

  12. Yang, Y. et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature 592, 60–64 (2021).

    ADS  Google Scholar 

  13. Falk, M. L. The flow of glass. Science 318, 1880–1881 (2007).

    Google Scholar 

  14. Cubuk, E. D. et al. Structure-property relationships from universal signatures of plasticity in disordered solids. Science 358, 1033–1037 (2017).

    ADS  Google Scholar 

  15. Wang, Z., Sun, B. A., Bai, H. Y. & Wang, W. H. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nat. Commun. 5, 5823 (2014).

    ADS  Google Scholar 

  16. Huang, P. Y. et al. Imaging atomic rearrangements in two-dimensional silica glass: watching silica’s dance. Science 342, 224–227 (2017).

    ADS  Google Scholar 

  17. Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407–415 (1976).

    Google Scholar 

  18. Argon, A. S. Plastic deformation in metallic glasses. Acta Metall. 27, 47–58 (1979).

    Google Scholar 

  19. Falk, M. L. & Langer, J. S. Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192–7205 (1998).

    ADS  Google Scholar 

  20. Johnson, W. L. & Samwer, K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).

    ADS  Google Scholar 

  21. Liu, A. C. Y. et al. Local symmetry predictors of mechanical stability in glasses. Sci. Adv. 8, eabn0681 (2022).

    Google Scholar 

  22. Schall, P., Weitz, D. A. & Spaepen, F. Structural rearrangements that govern flow in colloidal glasses. Science 318, 1895–1899 (2007).

    ADS  Google Scholar 

  23. Laurati, M., Masshoff, P., Mutch, K. J., Egelhaaf, S. U. & Zaccone, A. Long-lived neighbors determine the rheological response of glasses. Phys. Rev. Lett. 118, 018002 (2017).

    ADS  Google Scholar 

  24. Kong, D. J., Chen, W. R., Zeng, K. Q., Porcar, L. & Wang, Z. Localized elasticity governs the nonlinear rheology of colloidal supercooled liquids. Phys. Rev. X 12, 041006 (2022).

    Google Scholar 

  25. Demkowicz, M. J. & Argon, A. S. High-density liquidlike component facilitates plastic flow in a model amorphous silicon system. Phys. Rev. Lett. 93, 025505 (2004).

    ADS  Google Scholar 

  26. Wang, Y. et al. Tension–compression asymmetry in amorphous silicon. Nat. Mater. 20, 1371–1377 (2021).

    ADS  Google Scholar 

  27. Zaccone, A. & Scossa-Romano, E. Approximate analytical description of the nonaffine response of amorphous solids. Phys. Rev. B 83, 184205 (2011).

    ADS  Google Scholar 

  28. Ganguly, S., Sengupta, S. & Sollich, P. Statistics of non-affine defect precursors: tailoring defect densities in colloidal crystals using external fields. Soft Matter 11, 4517–4526 (2015).

    ADS  Google Scholar 

  29. Ganguly, S., Sengupta, S., Sollich, P. & Rao, M. Nonaffine displacements in crystalline solids in the harmonic limit. Phys. Rev. E 87, 042801 (2013).

    ADS  Google Scholar 

  30. DiDonna, B. A. & Lubensky, T. C. Nonaffine correlations in random elastic media. Phys. Rev. E 72, 066619 (2005).

    ADS  Google Scholar 

  31. Popli, P., Kayal, S., Sollich, P. & Sengupta, S. Exploring the link between crystal defects and nonaffine displacement fluctuations. Phys. Rev. E 100, 033002 (2019).

    ADS  Google Scholar 

  32. Nath, P. et al. On the existence of thermodynamically stable rigid solids. Proc. Natl Acad. Sci. USA 115, 4322–4329 (2018).

    Google Scholar 

  33. Zaccone, A. & Terentjev, E. M. Disorder-assisted melting and the glass transition in amorphous solids. Phys. Rev. Lett. 110, 178002 (2013).

    ADS  Google Scholar 

  34. Lemaître, A. & Maloney, C. Sum rules for the quasi-static and visco-elastic response of disordered solids at zero temperature. J. Stat. Phys. 123, 415–453 (2006).

    ADS  MathSciNet  MATH  Google Scholar 

  35. Palyulin, V. V. et al. Parameter-free predictions of the viscoelastic response of glassy polymers from non-affine lattice dynamics. Soft Matter 14, 8475–8482 (2018).

    ADS  Google Scholar 

  36. Milkus, R. & Zaccone, A. Local inversion-symmetry breaking controls the boson peak in glasses and crystals. Phys. Rev. B 93, 094204 (2016).

    ADS  Google Scholar 

  37. Hess, S. Shear-flow-induced distortion of the pair-correlation function. Phys. Rev. A 22, 2844–2848 (1980).

    ADS  Google Scholar 

  38. Huang, G. R., Wu, B., Wang, Y. Y. & Chen, W. R. Characterization of microscopic deformation through two-point spatial correlation functions. Phys. Rev. E 97, 012605 (2018).

    ADS  Google Scholar 

  39. Evans, D. J., Hanley, H. J. M. & Hess, S. Non-Newtonian phenomena in simple fluids. Phys. Today 37, 26–35 (1984).

    ADS  Google Scholar 

  40. Wang, Z. et al. Fingerprinting molecular relaxation in deformed polymers. Phys. Rev. X 7, 031003 (2017).

    Google Scholar 

  41. Dmowski, W., Iwashita, T., Chuang, C. P., Almer, J. & Egami, T. Elastic heterogeneity in metallic glasses. Phys. Rev. Lett. 105, 205502 (2010).

    ADS  Google Scholar 

  42. Suzuki, Y., Haimovich, J. & Egami, T. Bond-orientational anisotropy in metallic glasses observed by X-ray diffraction. Phys. Rev. B 35, 2162–2168 (1987).

    ADS  Google Scholar 

  43. Wang, H. et al. Nonaffine strains control ductility of metallic glasses. Phys. Rev. Lett. 128, 155501 (2022).

    ADS  Google Scholar 

  44. Egami, T., Iwashita, T. & Dmowski, W. Mechanical properties of metallic glasses. Metals 3, 77–113 (2013).

    Google Scholar 

  45. Dmowski, W. & Egami, T. Observation of structural anisotropy in metallic glasses induced by mechanical deformation. J. Mater. Res. 22, 412–418 (2011).

    ADS  Google Scholar 

  46. Ott, R. T. et al. Anelastic strain and structural anisotropy in homogeneously deformed Cu64.5Zr35.5 metallic glass. Acta Mater. 56, 5575–5583 (2008).

    ADS  Google Scholar 

  47. Choi, I. C. et al. Indentation size effect and shear transformation zone size in a bulk metallic glass in two different structural states. Acta Mater. 60, 6862–6868 (2012).

    ADS  Google Scholar 

  48. Fan, Y., Iwashita, T. & Egami, T. How thermally activated deformation starts in metallic glass. Nat. Commun. 5, 5083 (2014).

    ADS  Google Scholar 

  49. Maloney, C. E. & Lemaître, A. Amorphous systems in athermal, quasistatic shear. Phys. Rev. E 74, 016118 (2006).

    ADS  Google Scholar 

  50. Miracle, D. B. A structural model for metallic glasses. Nat. Mater. 3, 697–702 (2004).

    ADS  Google Scholar 

  51. Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).

    ADS  Google Scholar 

  52. Lan, S. et al. A medium-range structure motif linking amorphous and crystalline states. Nat. Mater. 20, 1347–1352 (2021).

    ADS  Google Scholar 

  53. Ye, J. C., Lu, J., Liu, C. T., Wang, Q. & Yang, Y. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat. Mater. 9, 619–623 (2010).

    ADS  Google Scholar 

  54. Wang, W. H., Yang, Y., Nieh, T. G. & Liu, C. T. On the source of plastic flow in metallic glasses: concepts and models. Intermetallics 67, 81–86 (2015).

    Google Scholar 

  55. Pan, D., Inoue, A., Sakurai, T. & Chen, M. W. Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc. Natl Acad. Sci. USA 105, 14769–14772 (2008).

    ADS  Google Scholar 

  56. Sun, Y. H. et al. Flow-induced elastic anisotropy of metallic glasses. Acta Mater. 112, 132–140 (2016).

    ADS  Google Scholar 

  57. Mendelev, M. I. et al. Development of suitable interatomic potentials for simulation of liquid and amorphous Cu-Zr alloys. Philos. Mag. 89, 967–987 (2009).

    ADS  Google Scholar 

  58. Rossi, G., Monticelli, L., Puisto, S. R., Vattulainen, I. & Ala-Nissila, T. Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case. Soft Matter 7, 698–708 (2011).

    ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Plan with grant no. 2018YFA0703603 (B.S.); the Guangdong Major Project of Basic and Applied Basic Research of China with grant nos. 2019B030302010 (W.W.) and 2020B1515120092 (B.S.); the National Natural Science Foundation of China (NSFC) with grant nos. 52192601 (H.B.), 52192602 (B.S.), 61888102 (W.W.) and 52001272 (Y.T.); and the Strategic Priority Research Program of Chinese Academy of Sciences with grant no. XDB30000000 (W.W.). W.D. and T.E. were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. H.P. acknowledges the computer resources provided by High Performance Computing Cluster (HPC) of Central South University.

Author information

Authors and Affiliations

Authors

Contributions

H.B. and B.S. conceived and supervised the project. J.D. prepared the materials and performed the mechanical and thermal experiments. H.P. performed the MD simulations. H.W., Y.T. and W.D. performed the high-energy XRD experiments. J.D., Y.T., H.P., Y.W. and B.S. performed the data analysis and wrote the manuscript with input from all the other co-authors. T.E., W.W. and H.B. discussed the results and revised the manuscript.

Corresponding authors

Correspondence to Hailong Peng, Yang Tong, Baoan Sun or Haiyang Bai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Texts I and II.

Supplementary Data 1

Statistical source data for Supplementary Fig. 2.

Supplementary Data 2

Statistical source data for Supplementary Fig. 3.

Source data

Source Data Fig. 1

Unprocessed diffraction patterns.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Peng, H., Wang, H. et al. Non-affine atomic rearrangement of glasses through stress-induced structural anisotropy. Nat. Phys. 19, 1896–1903 (2023). https://doi.org/10.1038/s41567-023-02243-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02243-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing