Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Logarithmic aging via instability cascades in disordered systems

Abstract

Many complex and disordered systems fail to reach equilibrium after they have been quenched or perturbed. Instead, they sluggishly relax toward equilibrium at an ever-slowing, history-dependent rate, a process termed physical aging. The microscopic processes underlying the dynamic slow-down during aging and the reason for its similar occurrence in different systems remain poorly understood. Here, we reveal the structural mechanism underlying logarithmic aging in disordered mechanical systems through experiments in crumpled sheets and simulations of a disordered network of bistable elastic elements. We show that under load, the system self-organizes to a metastable state poised on the verge of an instability, where it can remain for long, but finite, times. The system’s relaxation is intermittent, advancing via rapid sequences of instabilities, grouped into self-similar, aging avalanches. Crucially, the quiescent dwell times between avalanches grow in proportion to the system’s age, due to a slow increase of the lowest effective energy barrier, which leads to logarithmic aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental observation of aging and avalanche dynamics.
Fig. 2: Aging in the numerical model.
Fig. 3: Microscopic aging mechanism.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions are presented in the paper and/or the Supplementary Information. Experimental datasets are available in the Supplementary Information. Datasets generated during the current study are available from the corresponding author upon reasonable request.

Code availability

An example of the LAMMPS simulation script used in this study is available in the Supplementary Information. Other scripts and numerical data are available from the corresponding author upon reasonable request.

References

  1. Matan, K., Williams, R. B., Witten, T. A. & Nagel, S. R. Crumpling a thin sheet. Phys. Rev. Lett. 88, 076101 (2002).

    ADS  Google Scholar 

  2. Lahini, Y., Gottesman, O., Amir, A. & Rubinstein, S. Nonmonotonic aging and memory retention in disordered mechanical systems. Phys. Rev. Lett. 118, 8 (2017).

  3. Kramer, E. M. & Lobkovsky, A. E. Universal power law in the noise from a crumpled elastic sheet. Phys. Rev. E 53, 1465 (1996).

    ADS  Google Scholar 

  4. Shohat, D., Hexner, D. & Lahini, Y. Memory from coupled instabilities in unfolded crumpled sheets. Proc. Natl Acad. Sci. USA 119, e2200028119 (2022).

    Google Scholar 

  5. Houle, P. A. & Sethna, J. P. Acoustic emission from crumpling paper. Phys. Rev. E 54, 278 (1996).

    ADS  Google Scholar 

  6. Keim, N. C., Paulsen, J. D., Zeravcic, Z., Sastry, S. & Nagel, S. R. Memory formation in matter. Rev. Mod. Phys. 91, 035002 (2019).

    ADS  MathSciNet  Google Scholar 

  7. Oppenheimer, N. & Witten, T. A. Shapeable sheet without plastic deformation. Phys. Rev. E 92, 052401 (2015).

    ADS  Google Scholar 

  8. Shohat, D. & Lahini, Y. Dissipation indicates memory formation in driven disordered systems. Phys. Rev. Lett. 130, 048202 (2023).

    ADS  Google Scholar 

  9. Lahini, Y., Rubinstein, S. M. & Amir, A. Crackling noise during slow relaxations in crumpled sheets. Phys. Rev. Lett. 130, 258201 (2023).

    ADS  Google Scholar 

  10. Barrat, J.-L., Feigelman, M., Kurchan, J. & Dalibard, J. (eds) Slow Relaxations and Nonequilibrium Dynamics in Condensed Matter: Les Houches Session LXXVII (Springer Berlin Heidelberg, 2003).

  11. Gurevich, A. & Küpfer, H. Time scales of the flux creep in superconductors. Phys. Rev. B 48, 6477 (1993).

    ADS  Google Scholar 

  12. Vaknin, A., Ovadyahu, Z. & Pollak, M. Aging effects in an Anderson insulator. Phys. Rev. Lett. 84, 3402 (2000).

    ADS  Google Scholar 

  13. Grenet, T., Delahaye, J., Sabra, M. & Gay, F. Anomalous electric-field effect and glassy behaviour in granular aluminium thin films: electron glass?. Eur. Phys. J. B 56, 183–197 (2007).

    ADS  Google Scholar 

  14. Morgan, I. L., Avinery, R., Rahamim, G., Beck, R. & Saleh, O. A. Glassy dynamics and memory effects in an intrinsically disordered protein construct. Phys. Rev. Lett. 125, 058001 (2020).

    ADS  Google Scholar 

  15. Lieleg, O., Kayser, J., Brambilla, G., Cipelletti, L. & Bausch, A. R. Slow dynamics and internal stress relaxation in bundled cytoskeletal networks. Nat. Mater. 10, 236–242 (2011).

    ADS  Google Scholar 

  16. Kaplan, Y. et al. Observation of universal ageing dynamics in antibiotic persistence. Nature 600, 290–294 (2021).

    ADS  Google Scholar 

  17. Ben-David, O., Rubinstein, S. M. & Fineberg, J. Slip-stick and the evolution of frictional strength. Nature 463, 76–79 (2010).

    ADS  Google Scholar 

  18. Kaz, D. M., McGorty, R., Mani, M., Brenner, M. P. & Manoharan, V. N. Physical ageing of the contact line on colloidal particles at liquid interfaces. Nat. Mater. 11, 138–142 (2012).

    ADS  Google Scholar 

  19. Song, J. et al. Microscopic dynamics underlying the stress relaxation of arrested soft materials. Proc. Natl Acad. Sci. USA 119, e2201566119 (2022).

    Google Scholar 

  20. Knight, J. B., Fandrich, C. G., Lau, C. N., Jaeger, H. M. & Nagel, S. R. Density relaxation in a vibrated granular material. Phys. Rev. E 51, 3957 (1995).

    ADS  Google Scholar 

  21. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    ADS  Google Scholar 

  22. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    ADS  Google Scholar 

  23. Arceri, F., Landes, F. P., Berthier, L. & Biroli, G. A Statistical Mechanics Perspective on Glasses and Aging. In Encyclopedia of Complexity and Systems Science (ed. Meyers, R. A.) pp 1–68 (Springer Berlin Heidelberg, 2020).

  24. Lundgren, L., Svedlindh, P., Nordblad, P. & Beckman, O. Dynamics of the relaxation-time spectrum in a CuMn spin-glass. Phys. Rev. Lett. 51, 911 (1983).

    ADS  Google Scholar 

  25. Struik, L. C. E. Physical aging in plastics and other glassy materials. Polym. Eng. Sci. 17, 165–173 (1977).

    Google Scholar 

  26. Qiao, J. & Pelletier, J.-M. Dynamic mechanical relaxation in bulk metallic glasses: a review. J. Mater. Sci. Technol. 30, 523–545 (2014).

    Google Scholar 

  27. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    ADS  Google Scholar 

  28. Samarakoon, A. et al. Aging, memory, and nonhierarchical energy landscape of spin jam. Proc. Natl Acad. Sci. USA 113, 11806–11810 (2016).

    ADS  Google Scholar 

  29. Narayanaswamy, O. A model of structural relaxation in glass. J. Am. Ceram. Soc. 54, 491–498 (1971).

    Google Scholar 

  30. Bouchaud, J.-P. Weak ergodicity breaking and aging in disordered systems. J. Phys. I 2, 1705–1713 (1992).

    Google Scholar 

  31. Cugliandolo, L. F. & Kurchan, J. Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model. Phys. Rev. Lett. 71, 173 (1993).

    ADS  Google Scholar 

  32. Sibani, P. & Hoffmann, K. H. Hierarchical models for aging and relaxation of spin glasses. Phys. Rev. Lett. 63, 2853 (1989).

    ADS  Google Scholar 

  33. Sibani, P. & Littlewood, P. B. Slow dynamics from noise adaptation. Phys. Rev. Lett. 71, 1482 (1993).

    ADS  Google Scholar 

  34. Rinn, B., Maass, P. & Bouchaud, J.-P. Multiple scaling regimes in simple aging models. Phys. Rev. Lett. 84, 5403 (2000).

    ADS  Google Scholar 

  35. Kolvin, I. & Bouchbinder, E. Simple nonlinear equation for structural relaxation in glasses. Phys. Rev. E 86, 010501 (2012).

    ADS  Google Scholar 

  36. Amir, A., Oreg, Y. & Imry, Y. On relaxations and aging of various glasses. Proc. Natl Acad. Sci. USA 109, 1850–1855 (2012).

    ADS  Google Scholar 

  37. Robe, D. M., Boettcher, S., Sibani, P. & Yunker, P. Record dynamics: direct experimental evidence from jammed colloids. EPL 116, 38003 (2016).

    ADS  Google Scholar 

  38. Boettcher, S., Robe, D. M. & Sibani, P. Aging is a log-poisson process, not a renewal process. Phys. Rev. E 98, 020602 (2018).

    ADS  Google Scholar 

  39. Douglass, I. M. & Dyre, J. C. Distance-as-time in physical aging. Phys. Rev. E 106, 054615 (2022).

    ADS  Google Scholar 

  40. Kovacs, A. J., Aklonis, J. J., Hutchinson, J. M. & Ramos, A. R. Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J. Polym. Sci. B: Polym. Phys. 17, 1097–1162 (1979).

    ADS  Google Scholar 

  41. Yan, L., Düring, G. & Wyart, M. Why glass elasticity affects the thermodynamics and fragility of supercooled liquids. Proc. Natl Acad. Sci. USA 110, 6307–6312 (2013).

    ADS  Google Scholar 

  42. Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality. Phys. Rev. A 38, 364 (1988).

    ADS  MathSciNet  MATH  Google Scholar 

  43. Witten, T. A. Stress focusing in elastic sheets. Rev. Mod. Phys. 79, 643 (2007).

    ADS  MathSciNet  MATH  Google Scholar 

  44. Blair, D. L. & Kudrolli, A. Geometry of crumpled paper. Phys. Rev. Lett. 94, 166107 (2005).

    ADS  Google Scholar 

  45. Andrejevic, J., Lee, L. M., Rubinstein, S. M. & Rycroft, C. H. A model for the fragmentation kinetics of crumpled thin sheets. Nat. Commun. 12, 1–10 (2021).

    Google Scholar 

  46. Lechenault, F. & Adda-Bedia, M. Generic bistability in creased conical surfaces. Phys. Rev. Lett. 115, 235501 (2015).

    ADS  Google Scholar 

  47. Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neuro. 23, 11167–11177 (2003).

    Google Scholar 

  48. Thompson, A. P. et al. Lammps - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    MATH  Google Scholar 

  49. Widmer-Cooper, A., Harrowell, P. & Fynewever, H. How reproducible are dynamic heterogeneities in a supercooled liquid. Phys. Rev. Lett. 93, 135701 (2004).

    ADS  Google Scholar 

  50. Hänggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory: fifty years after kramers. Rev. Mod. Phys. 62, 251 (1990).

    ADS  MathSciNet  Google Scholar 

  51. Popovic, M., de Geus, T. W., Ji, W., Rosso, A. & Wyart, M. Scaling description of creep flow in amorphous solids. Phys. Rev. Lett. 129, 20 (2022).

  52. Jaeger, H., Liu, C.-h & Nagel, S. R. Relaxation at the angle of repose. Phys. Rev. Lett. 62, 40 (1989).

    ADS  Google Scholar 

  53. Lubchenko, V. & Wolynes, P. G. Theory of structural glasses and supercooled liquids. Annu. Rev. Phys. Chem. 58, 235–266 (2007).

    ADS  Google Scholar 

  54. Ritort, F. & Sollich, P. Glassy dynamics of kinetically constrained models. Adv. Phys. 52, 219–342 (2003).

    ADS  Google Scholar 

  55. Chacko, R. N. et al. Elastoplasticity mediates dynamical heterogeneity below the mode coupling temperature. Phys. Rev. Lett. 127, 048002 (2021).

    ADS  Google Scholar 

  56. Kumar, D. et al. Mapping out the glassy landscape of a mesoscopic elastoplastic model. J. Chem. Phys. 157, 174504 (2022).

    ADS  Google Scholar 

  57. Ozawa, M. & Biroli, G. Elasticity, facilitation, and dynamic heterogeneity in glass-forming liquids. Phys. Rev. Lett. 130, 138201 (2023).

    ADS  Google Scholar 

  58. Tahaei, A., Biroli, G., Ozawa, M., Popović, M. & Wyart, M. Scaling description of dynamical heterogeneity and avalanches of relaxation in glass-forming liquids. Preprint at https://arxiv.org/abs/2305.00219 (2023).

  59. Keta, Y.-E., Mandal, R., Sollich, P., Jack, R. L. & Berthier, L. Intermittent relaxation and avalanches in extremely persistent active matter. Soft Matter 19, 3871–3883 (2023).

    ADS  Google Scholar 

  60. Dyre, J. C. Colloquium: the glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 78, 953 (2006).

    ADS  Google Scholar 

  61. Wales, D. J., Miller, M. A. & Walsh, T. R. Archetypal energy landscapes. Nature 394, 758–760 (1998).

    ADS  Google Scholar 

  62. Janke, W. & Janke, W. Rugged Free-Energy Landscapes–An Introduction (Springer, 2008).

  63. Jules, T., Lechenault, F. & Adda-Bedia, M. Plasticity and aging of folded elastic sheets. Phys. Rev. E 102, 033005 (2020).

    ADS  Google Scholar 

  64. Nicolas, A., Ferrero, E. E., Martens, K. & Barrat, J.-L. Deformation and flow of amorphous solids: insights from elastoplastic models. Rev. Mod. Phys. 90, 045006 (2018).

    ADS  Google Scholar 

  65. Priesemann, V. et al. Spike avalanches in vivo suggest a driven, slightly subcritical brain state. Front. Syst. Neurosci. 8, 108 (2014).

    Google Scholar 

  66. Bauke, H. Parameter estimation for power-law distributions by maximum likelihood methods. Eur. Phys. J. B 58, 167–173 (2007).

    ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Hexner, S. Reuveni, E. Bouchbinder, E. Lerner and K. González-Lopéz for insightful discussions and to Y. Shokef, H. Diamant and Y. Bar-Sinai for comments on the manuscript. We also thank B. Hirshberg for sharing insights on using LAMMPS and D. Hexner for providing the disordered network topologies. This work was supported by the Israel Science Foundation grants 2096/18 and 2117/22. D.S. acknowledges support from the Clore Israel Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Y.F. and Y.L. designed and performed experiments. D.S. and Y.L. wrote the LAMMPS model, ran the simulations and analysed the experimental and numerical results. D.S., Y.F. and Y.L. wrote the manuscript.

Corresponding authors

Correspondence to Dor Shohat or Yoav Lahini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Seung-Hun Lee, Kari Dalnoki-Veress and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Video 1, Figs. 1–11 and Sections 1–4.

Supplementary Video 1

In the supplementary video, we show the compaction of a network of n = 2,000 nodes under external forcing and weak thermal noise T = 10−3. While thermal fluctuations are barely apparent, they suffice to trigger large-scale avalanches of instabilities. The avalanches are separated by long quiescent waiting times in which the system is stationary, other than equilibrium-like fluctuations. These waiting timed grow longer as the systems ages. Bond colour in the video represents the potential energy of each bond U(δRij), as shown by the colourbar in Supplementary Fig. 1. Blue bonds are close to one of their minimal energy states, while red bonds are on the verge of instability. Note the distribution of unstable bonds in the network, the occurrence of avalanches separated by (growing) quiescent dwell times, and how avalanches generate new unstable bonds. This highlights the process by which the network self-organizes to a state on the verge of instability.

Supplementary Data 1

Processed experimental data of the acoustic emissions of crumpled sheets under external load. It also contained an example script for the LAMMPS simulations used in the study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shohat, D., Friedman, Y. & Lahini, Y. Logarithmic aging via instability cascades in disordered systems. Nat. Phys. 19, 1890–1895 (2023). https://doi.org/10.1038/s41567-023-02220-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02220-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing