Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of the orbital inverse Rashba–Edelstein effect

Abstract

The spin–orbit interaction plays an important role in magnetism and in many quantum materials. It is the cornerstone of the physics of many electronic phases that emerge at interfaces because of broken inversion symmetry. In that context, the spin Rashba effect locks electronic spins with momentum to produce large spin galvanic effects. It has recently been argued that these spin-based effects could in fact be spin–orbit coupling consequences of a potentially larger orbital effect. Here we observe spin-to-charge conversion at a LaAlO3/SrTiO3 interface and demonstrate that its orbital contribution dominates. Our analysis of the in-plane anisotropy and gate voltage dependence of the angular momentum conversion into charge highlights some of the salient features of the orbital Rashba splitting. These results open the door to broader use of pure orbital angular momentum effects and confirm the potential of the orbital degree of freedom for information storage and processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geometry of the experiments.
Fig. 2: Back-gate variations of the IEE amplitude.
Fig. 3: Angular variations in the spin-to-charge conversion and comparison with the DFT response.
Fig. 4: Schematic angular contributions.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available via Zenodo at https://zenodo.org/deposit/7958054. Source data are provided with this paper.

Code availability

The codes that support the findings of the study are available from the corresponding author on reasonable request. Quantum ESPRESSO is available at https://www.quantum-espresso.org/.

References

  1. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    ADS  Google Scholar 

  2. Bhattacharjee, S., Singh, S., Wang, D., Viret, M. & Bellaiche, L. Prediction of novel interface-driven spintronic effects. J. Phys. Condens. Matter 26, 315008 (2014).

    ADS  Google Scholar 

  3. Winkler, R. SpinOrbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, 2003).

  4. Gorini, C., Schwab, P., Dzierzawa, M. & Raimondi, R. Spin polarizations and spin Hall currents in a two-dimensional electron gas with magnetic impurities. Phys. Rev. B 78, 125327 (2008).

    ADS  Google Scholar 

  5. Ganichev, S. D. et al. Spin-galvanic effect. Nature 417, 153–156 (2002).

    ADS  Google Scholar 

  6. Gorini, C. et al. Theory of current-induced spin polarization in an electron gas. Phys. Rev. B 95, 205424 (2017).

    ADS  Google Scholar 

  7. Ganichev, S. D., Trushin, M. & Schliemann, J. in Spintronics Handbook: Spin Transport and Magnetism 2nd edn, Vol. 2 Ch. 7 (CRC Press, 2019).

  8. Rojas-Sánchez, J.-C. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Comm. 4, 2944 (2013).

    ADS  Google Scholar 

  9. Shen, K., Vignale, G. & Raimondi, R. Microscopic theory of the inverse Edelstein effect. Phys. Rev. Lett. 112, 096601 (2014).

    ADS  Google Scholar 

  10. Ivchenko, E. L. & Ganichev, S. D. Spin-dependent photogalvanic effects (A review). Preprint at https://arxiv.org/abs/1710.09223 (2017).

  11. Park, S. R., Kim, C. H., Yu, J., Han, J. H. & Kim, C. Orbital-angular-momentum based origin of Rashba-type surface band splitting. Phys. Rev. Lett. 107, 156803 (2011).

    ADS  Google Scholar 

  12. Park, J.-H., Kim, C. H., Rhim, J.-W. & Han, J. H. Orbital Rashba effect and its detection by circular dichroism angle-resolved photoemission spectroscopy. Phys. Rev. B 85, 195401 (2012).

    ADS  Google Scholar 

  13. Levitov, L. S., Nazarov, Y. V. & Eliashberg, G. M. Magnetoelectric effects in conductors with mirror isomer symmetry. Zh. Eksp. Teor. Fiz. 88, 229–236 (1985).

    Google Scholar 

  14. Kim, Y., Lutchyn, R. M. & Nayak, C. Origin and transport signatures of spin-orbit interactions in one- and two-dimensional SrTiO3-based heterostructures. Phys. Rev. B 87, 245121 (2013).

    ADS  Google Scholar 

  15. Go, D. et al. Theory of current-induced angular momentum transfer dynamics in spin-orbit coupled systems. Phys. Rev. Res. 2, 033401 (2020).

    Google Scholar 

  16. Ding, S. et al. Harnessing orbital-to-spin conversion of interfacial orbital currents for efficient spin-orbit torques. Phys. Rev. Lett. 125, 177201 (2020).

    ADS  Google Scholar 

  17. Lee, S. et al. Efficient conversion of orbital Hall current to spin current for spin-orbit torque switching. Commun. Phys. 4, 234 (2021).

    Google Scholar 

  18. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    ADS  Google Scholar 

  19. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    ADS  Google Scholar 

  20. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    ADS  Google Scholar 

  21. Ben Shalom, M. et al. Anisotropic magnetotransport at the SrTiO3/LaAlO3 interface. Phys. Rev. B 80, 140403 (2009).

    Google Scholar 

  22. Caviglia, A. D. et al. Tunable Rashba spin-orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010).

    ADS  Google Scholar 

  23. Zhong, Z., Tóth, A. & Held, K. Theory of spin-orbit coupling at LaAlO3/SrTiO3 interfaces and SrTiO3 surfaces. Phys. Rev. B 87, 161102 (2013).

    ADS  Google Scholar 

  24. King, P. D. C. et al. Quasiparticle dynamics and spin–orbital texture of the SrTiO3 two-dimensional electron gas. Nat. Commun. 5, 3414 (2014).

    ADS  Google Scholar 

  25. Fête, A., Gariglio, S., Caviglia, A. D., Triscone, J.-M. & Gabay, M. Rashba induced magnetoconductance oscillations in the LaAlO3-SrTiO3 heterostructure. Phys. Rev. B 86, 201105 (2012).

    ADS  Google Scholar 

  26. Vaz, D. C. et al. Mapping spin–charge conversion to the band structure in a topological oxide two-dimensional electron gas. Nat. Mater. 18, 1187–1193 (2019).

    ADS  Google Scholar 

  27. Vivek, M., Goerbig, M. O. & Gabay, M. Topological states at the (001) surface of SrTiO3. Phys. Rev. B 95, 165117 (2017).

    ADS  Google Scholar 

  28. Joshua, A., Ruhman, J., Pecker, S., Altman, E. & Ilani, S. Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface. Proc. Natl Acad. Sci. USA 110, 9633–9638 (2013).

    ADS  Google Scholar 

  29. Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016).

    ADS  Google Scholar 

  30. Chauleau, J.-Y. et al. Efficient spin-to-charge conversion in the 2D electron liquid at the LAO/STO interface. Europhys. Lett. 116, 17006 (2016).

    ADS  Google Scholar 

  31. Johansson, A., Göbel, B., Henk, J., Bibes, M. & Mertig, I. Spin and orbital Edelstein effects in a two-dimensional electron gas: theory and application to SrTiO3 interfaces. Phys. Rev. Res. 3, 013275 (2021).

    Google Scholar 

  32. To, D. Q. et al. Spin to charge conversion at Rashba-split SrTiO3 interfaces from resonant tunneling. Phys. Rev. Res. 3, 043170 (2021).

    Google Scholar 

  33. Richter, C. et al. Interface superconductor with gap behaviour like a high-temperature superconductor. Nature 502, 528–531 (2013).

    ADS  Google Scholar 

  34. Gariglio, S., Gabay, M. & Triscone, J.-M. Research update: conductivity and beyond at the LaAlO3/SrTiO3 interface. APL Mater. 4, 060701 (2016).

    ADS  Google Scholar 

  35. Park, J.-H., Kim, C. H., Lee, H.-W. & Han, J. H. Orbital chirality and Rashba interaction in magnetic bands. Phys. Rev. B 87, 041301 (2013).

    ADS  Google Scholar 

  36. Jo, D., Go, D. & Lee, H.-W. Gigantic intrinsic orbital Hall effects in weakly spin-orbit coupled metals. Phys. Rev. B 98, 214405 (2018).

    ADS  Google Scholar 

  37. Lee, D. et al. Orbital torque in magnetic bilayers. Nat. Commun. 12, 6710 (2021).

    ADS  Google Scholar 

  38. Go, D. et al. Long-range orbital magnetoelectric torque in ferromagnets (2022); https://arxiv.org/abs/2106.07928

  39. Reyren, N. et al. Gate-controlled spin injection at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 108, 186802 (2012).

    ADS  Google Scholar 

  40. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    ADS  Google Scholar 

  41. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    ADS  Google Scholar 

  42. Adachi, H., Uchida, K., Saitoh, E. & Maekawa, S. Theory of the spin Seebeck effect. Rep. Prog. Phys. 76, 036501 (2013).

    ADS  Google Scholar 

  43. Rousseau, O. et al. Spin-charge conversion in ferromagnetic Rashba states. Phys. Rev. B 104, 134438 (2021).

    ADS  Google Scholar 

  44. Shanavas, K. V. Theoretical study of the cubic Rashba effect at the SrTiO3 (001) surfaces. Phys. Rev. B 93, 045108 (2016).

    ADS  Google Scholar 

  45. Zhou, J., Shan, W.-Y. & Xiao, D. Spin responses and effective Hamiltonian for the two-dimensional electron gas at the oxide interface LaAlO3/SrTiO3. Phys. Rev. B 91, 241302 (2015).

    ADS  Google Scholar 

  46. Matos-Abiague, A. & Fabian, J. Tunneling anomalous and spin Hall effects. Phys. Rev. Lett. 115, 056602 (2015).

    ADS  MathSciNet  Google Scholar 

  47. Fabian, J., Matos-Abiague, A., Ertler, C. & Stano, P. Semiconductor spintronics. Acta Phys. Slov. 57, 565–907 (2007).

    ADS  Google Scholar 

  48. Sakurai, J. J. Modern Quantum Mechanics Revised edn (Addison-Wesley, 1994).

  49. Yoda, T., Yokoyama, T. & Murakami, S. Orbital Edelstein effect as a condensed-matter analog of solenoids. Nano Lett. 18, 916–920 (2018).

    ADS  Google Scholar 

  50. Hayashi, H. et al. Observation of long-range orbital transport and giant orbital torque. Commun. Phys. 6, 32 (2023).

    Google Scholar 

  51. Jander, A., Moreland, J. & Kabos, P. Angular momentum and energy transferred through ferromagnetic resonance. Appl. Phys. Lett. 78, 2348–2350 (2001).

    ADS  Google Scholar 

  52. Garanin, D. A. & Chudnovsky, E. M. Angular momentum in spin-phonon processes. Phys. Rev. B 92, 024421 (2015).

    ADS  Google Scholar 

  53. Lesne, E. et al. Designing spin and orbital sources of Berry curvature at oxide interfaces. Nat. Mater. 22, 576–582 (2023).

    ADS  Google Scholar 

  54. Chirolli, L., Mercaldo, M. T., Guarcello, C., Giazotto, F. & Cuoco, M. Colossal orbital Edelstein effect in noncentrosymmetric superconductors. Phys. Rev. Lett. 128, 217703 (2022).

    ADS  Google Scholar 

  55. Martens, U. et al. Anomalous Nernst effect and three-dimensional temperature gradients in magnetic tunnel junctions. Commun. Phys. 1, 65 (2018).

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the French National Agency ANR programme ORION through grant no. ANR-20-CE30-0022-02 and the SPICY project from the Labex NanoSaclay Investissements d’Avenir programme (grant no. ANR-10-LABX-0035). This work was supported by the Swiss National Science Foundation (Division II) and has received funding from the European Research Council under the European Union Seventh Framework Programme (FP7/2007–2013)/ERC Grant Agreement n.319286 (Q-MAC).

Author information

Authors and Affiliations

Authors

Contributions

M.V. conceived the idea and supervised the project with J.-Y.C. A.E.H., M.V. and J.-Y.C. carried out the experimental measurements, M.B., C.T., S.G. and J.-M.T. provided the samples, A.S. did the DFT calculations and C.B. the tight binding. C.G. participated in the theory part. All authors contributed to the discussion of results.

Corresponding author

Correspondence to Michel Viret.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Kyung-Jin Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–10 and Discussion.

Source data

Source Data Fig. 2

Experimental data and theoretical values for back-gate variations.

Source Data Fig. 3

Experimental data and theoretical values for angular dependences with DFT band-structure calculations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hamdi, A., Chauleau, JY., Boselli, M. et al. Observation of the orbital inverse Rashba–Edelstein effect. Nat. Phys. 19, 1855–1860 (2023). https://doi.org/10.1038/s41567-023-02121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02121-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing