Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Demonstration of three- and four-body interactions between trapped-ion spins

Abstract

Quantum processors use the native interactions between effective spins to simulate Hamiltonians or execute quantum gates. In most processors, the native interactions are pairwise, limiting the efficiency of controlling entanglement between many qubits. The capability of manipulating entanglement generated by higher-order interactions is a key challenge for the simulation of many Hamiltonian models appearing in various fields, including high-energy and nuclear physics, as well as quantum chemistry and error correction applications. Here we experimentally demonstrate control over a class of native interactions between trapped-ion qubits, extending conventional pairwise interactions to a higher order. By exploiting state-dependent squeezing operations, we realize and characterize high-fidelity gates and spin Hamiltonians comprising three- and four-body spin interactions. Our results demonstrate the potential of high-order spin interactions as a toolbox for quantum information applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Native operations of a trapped-ion quantum processor.
Fig. 2: Quantum phase gates.
Fig. 3: Characterization of a three-body interaction gate.
Fig. 4: Evolution by effective Hamiltonians with three- and four-body interactions.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Other data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  2. Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).

    ADS  MathSciNet  Google Scholar 

  3. Feng, L. et al. Continuous symmetry breaking in a trapped-ion spin chain. Preprint at arXiv https://doi.org/10.48550/arXiv.2211.01275 (2022).

  4. Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835 (1999).

    ADS  Google Scholar 

  5. Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).

    ADS  Google Scholar 

  6. Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    ADS  Google Scholar 

  7. Banuls, M. C. et al. Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D 74, 165 (2020).

    ADS  Google Scholar 

  8. Ciavarella, A., Klco, N. & Savage, M. J. Trailhead for quantum simulation of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis. Phys. Rev. D 103, 094501 (2021).

    ADS  MathSciNet  Google Scholar 

  9. Hauke, P., Marcos, D., Dalmonte, M. & Zoller, P. Quantum simulation of a lattice Schwinger model in a chain of trapped ions. Phys. Rev. X 3, 041018 (2013).

    Google Scholar 

  10. Farrell, R. C. et al. Preparations for quantum simulations of quantum chromodynamics in 1+1 dimensions: (I) axial gauge. Phys. Rev. D 107, 054512 (2023).

    ADS  Google Scholar 

  11. Pachos, J. K. & Plenio, M. B. Three-spin interactions in optical lattices and criticality in cluster Hamiltonians. Phys. Rev. Lett. 93, 056402 (2004).

    ADS  Google Scholar 

  12. Müller, M., Hammerer, K., Zhou, Y., Roos, C. F. & Zoller, P. Simulating open quantum systems: from many-body interactions to stabilizer pumping. New J. Phys. 13, 085007 (2011).

    ADS  MATH  Google Scholar 

  13. Motrunich, O. I. Variational study of triangular lattice spin-1/2 model with ring exchanges and spin liquid state in κ-(ET)2Cu2(CN)3. Phys. Rev. B 72, 045105 (2005).

    ADS  Google Scholar 

  14. Andrade, B. et al. Engineering an effective three-spin Hamiltonian in trapped-ion systems for applications in quantum simulation. Quantum Sci. Technol. 7, 034001 (2022).

    ADS  Google Scholar 

  15. Bermudez, A., Porras, D. & Martin-Delgado, M. Competing many-body interactions in systems of trapped ions. Phys. Rev. A 79, 060303 (2009).

    ADS  Google Scholar 

  16. Seeley, J. T., Richard, M. J. & Love, P. J. The Bravyi-Kitaev transformation for quantum computation of electronic structure. J. Chem. Phys. 137, 224109 (2012).

    ADS  Google Scholar 

  17. O’Malley, P. J. J. et al. Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016).

    Google Scholar 

  18. Nam, Y. et al. Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. NPJ Quantum Inf. 6, 33 (2020).

    ADS  Google Scholar 

  19. Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

    ADS  Google Scholar 

  20. Hempel, C. et al. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X 8, 031022 (2018).

    Google Scholar 

  21. Paetznick, A. & Reichardt, B. W. Universal fault-tolerant quantum computation with only transversal gates and error correction. Phys. Rev. Lett. 111, 090505 (2013).

    ADS  Google Scholar 

  22. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    ADS  MathSciNet  MATH  Google Scholar 

  23. Vedral, V., Barenco, A. & Ekert, A. Quantum networks for elementary arithmetic operations. Phys. Rev. A 54, 147 (1996).

    ADS  MathSciNet  Google Scholar 

  24. Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. Twenty-Eighth Annual ACM Symposium on Theory of Computing 212–219 (ACM, 1996).

  25. Wang, X., Sørensen, A. & Mølmer, K. Multibit gates for quantum computing. Phys. Rev. Lett. 86, 3907–3910 (2001).

    ADS  Google Scholar 

  26. Monz, T. et al. Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009).

    ADS  Google Scholar 

  27. Arias Espinoza, J. D., Groenland, K., Mazzanti, M., Schoutens, K. & Gerritsma, R. High-fidelity method for a single-step N-bit Toffoli gate in trapped ions. Phys. Rev. A 103, 052437 (2021).

    ADS  MathSciNet  Google Scholar 

  28. Figgatt, C. et al. Complete 3-qubit Grover search on a programmable quantum computer. Nat. Commun. 8, 1918 (2017).

    ADS  Google Scholar 

  29. Marvian, I. Restrictions on realizable unitary operations imposed by symmetry and locality. Nat. Phys. 18, 283–289 (2022).

    Google Scholar 

  30. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    ADS  MathSciNet  MATH  Google Scholar 

  31. Bullock, S. S. & Markov, I. L. Asymptotically optimal circuits for arbitrary n-qubit diagonal comutations. Quantum Inf. Comput. 4, 27–47 (2004).

    MathSciNet  MATH  Google Scholar 

  32. Efimov, V. Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33, 563–564 (1970).

    ADS  Google Scholar 

  33. Kraemer, T. et al. Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature 440, 315–318 (2006).

    ADS  Google Scholar 

  34. Aaij, R. et al. Observation of J/ψp resonances consistent with pentaquark states in Λb0J/ψkp decays. Phys. Rev. Lett. 115, 072001 (2015).

  35. Weimer, H., Müller, M., Lesanovsky, I., Zoller, P. & Büchler, H. P. A Rydberg quantum simulator. Nat. Phys. 6, 382–388 (2010).

    Google Scholar 

  36. Isenhower, L., Saffman, M. & Mølmer, K. Multibit Ck NOT quantum gates via Rydberg blockade. Quantum Inf. Process. 10, 755–770 (2011).

    MathSciNet  Google Scholar 

  37. Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).

    ADS  Google Scholar 

  38. Xing, T. H., Zhao, P. Z. & Tong, D. M. Realization of nonadiabatic holonomic multiqubit controlled gates with Rydberg atoms. Phys. Rev. A 104, 012618 (2021).

    ADS  MathSciNet  Google Scholar 

  39. Khazali, M. & Mølmer, K. Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of Rydberg atoms and superconducting circuits. Phys. Rev. X 10, 021054 (2020).

    Google Scholar 

  40. Naidon, P. & Endo, S. Efimov physics: a review. Rep. Prog. Phys. 80, 056001 (2017).

    ADS  Google Scholar 

  41. Zahedinejad, E., Ghosh, J. & Sanders, B. C. High-fidelity single-shot Toffoli gate via quantum control. Phys. Rev. Lett. 114, 200502 (2015).

    ADS  Google Scholar 

  42. Hill, A. D., Hodson, M. J., Didier, N. & Reagor, M. J. Realization of arbitrary doubly-controlled quantum phase gates. Preprint at arXiv https://doi.org/10.48550/arXiv.2108.01652 (2021).

  43. Kim, Y. et al. High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits. Nat. Phys. 18, 783–788 (2022).

  44. Menke, T. et al. Demonstration of tunable three-body interactions between superconducting qubits. Phys. Rev. Lett. 129, 220501 (2022).

    ADS  Google Scholar 

  45. Cirac, J. I. & Zoller, P. Quantum computation with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).

    ADS  Google Scholar 

  46. Monz, T. et al. Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009).

    ADS  Google Scholar 

  47. Goto, H. & Ichimura, K. Multiqubit controlled unitary gate by adiabatic passage with an optical cavity. Phys. Rev. A 70, 012305 (2004).

    ADS  Google Scholar 

  48. Gambetta, F. M., Zhang, C., Hennrich, M., Lesanovsky, I. & Li, W. Long-range multibody interactions and three-body antiblockade in a trapped Rydberg ion chain. Phys. Rev. Lett. 125, 133602 (2020).

    ADS  Google Scholar 

  49. Milburn, G., Schneider, S. & James, D. Ion trap quantum computing with warm ions. Fortschr. Phys. 48, 801–810 (2000).

    Google Scholar 

  50. Solano, E., de Matos Filho, R. L. & Zagury, N. Deterministic Bell states and measurement of the motional state of two trapped ions. Phys. Rev. A 59, R2539–R2543 (1999).

    ADS  Google Scholar 

  51. Burd, S. et al. Quantum amplification of boson-mediated interactions. Nat. Phys. 17, 898–902 (2021).

    Google Scholar 

  52. Shapira, Y., Cohen, S., Akerman, N., Stern, A. & Ozeri, R. Robust two-qubit gates for trapped ions using spin-dependent squeezing. Phys. Rev. Lett. 130, 030602 (2023).

    ADS  MathSciNet  Google Scholar 

  53. Katz, O., Cetina, M. & Monroe, C. N-body interactions between trapped ion qubits via spin-dependent squeezing. Phys. Rev. Lett. 129, 063603 (2022).

    ADS  Google Scholar 

  54. Katz, O., Cetina, M. & Monroe, C. Programmable N-body interactions with trapped ions. Preprint at arXiv https://doi.org/10.48550/arXiv.2207.10550 (2022).

  55. Maunz, P. L. W. High Optical Access Trap 2.0. Technical Report (Sandia National Lab, 2016).

  56. Egan, L. et al. Fault-tolerant control of an error-corrected qubit. Nature 598, 281–286 (2021).

  57. Cetina, M. et al. Control of transverse motion for quantum gates on individually addressed atomic qubits. PRX Quantum 3, 010334 (2022).

    ADS  Google Scholar 

  58. Olmschenk, S. et al. Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A 76, 052314 (2007).

    ADS  Google Scholar 

  59. Egan, L. N. Scaling Quantum Computers with Long Chains of Trapped Ions. PhD thesis, Univ. Maryland (2021).

  60. Sørensen, A. & Mølmer, K. Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000).

    ADS  Google Scholar 

  61. Zhu, S.-L., Monroe, C. & Duan, L.-M. Trapped ion quantum computation with transverse phonon modes. Phys. Rev. Lett. 97, 050505 (2006).

    ADS  Google Scholar 

  62. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    ADS  Google Scholar 

  63. Lu, Y. et al. Global entangling gates on arbitrary ion qubits. Nature 572, 363–367 (2019).

    ADS  Google Scholar 

  64. Pogorelov, I. et al. Compact ion-trap quantum computing demonstrator. PRX Quantum 2, 020343 (2021).

    ADS  Google Scholar 

  65. Figgatt, C. et al. Parallel entangling operations on a universal ion-trap quantum computer. Nature 572, 368–372 (2019).

    ADS  Google Scholar 

  66. Shapira, Y., Shaniv, R., Manovitz, T., Akerman, N. & Ozeri, R. Robust entanglement gates for trapped-ion qubits. Phys. Rev. Lett. 121, 180502 (2018).

    ADS  Google Scholar 

  67. Wang, Y. et al. High-fidelity two-qubit gates using a microelectromechanical-system-based beam steering system for individual qubit addressing. Phys. Rev. Lett. 125, 150505 (2020).

    ADS  Google Scholar 

  68. Leung, P. H. et al. Robust 2-qubit gates in a linear ion crystal using a frequency-modulated driving force. Phys. Rev. Lett. 120, 020501 (2018).

    ADS  Google Scholar 

  69. Webb, A. E. et al. Resilient entangling gates for trapped ions. Phys. Rev. Lett. 121, 180501 (2018).

    ADS  Google Scholar 

  70. Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    ADS  Google Scholar 

  71. Zhou, L., Wang, S.-T., Choi, S., Pichler, H. & Lukin, M. D. Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10, 021067 (2020).

    Google Scholar 

  72. Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).

    Google Scholar 

  73. Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    ADS  Google Scholar 

  74. Brown, K. R., Harrow, A. W. & Chuang, I. L. Arbitrarily accurate composite pulse sequences. Phys. Rev. A 70, 052318 (2004).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Schuckert for useful comments. This work is supported by the ARO through the IARPA LogiQ program; the NSF STAQ and QLCI programs; the DOE QSA program; the AFOSR MURIs on Dissipation Engineering in Open Quantum Systems, Quantum Measurement/Verification and Quantum Interactive Protocols; the ARO MURI on Modular Quantum Circuits; and the DOE HEP QuantISED Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the experimental design, construction and discussions and wrote the manuscript. O.K. collected the data, and O.K. and L.F. analysed the results. L.F. produced Fig. 1. O.K. produced Figs. 2–4.

Corresponding authors

Correspondence to Or Katz or Lei Feng.

Ethics declarations

Competing interests

O.K., L.F. and A.R. declare that they have no competing interests. M.C. is a co-inventor of the intellectual property that is licensed by the University of Maryland to IonQ, Inc. C.M. is a co-founder and chief scientist at IonQ, Inc.

Peer review

Peer review information

Nature Physics thanks Christian Schmiegelow and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Experimental sequences.

a, Sequence of displacement operations acting on the two edge ions and composing the MS interaction, enclosing a closed rectangular loop in phase-space and generating the evolution in Fig. 2a. b, Superimposing spin-dependent squeezing operations on the second spin scales the displacement generated by the third spin by a factor \(\exp ({\hat{\sigma }}_{x}^{(2)}\xi )\) and consequently also the enclosed phase-space area. This sequence was applied to the configurations in Fig. 2b–c and in Fig. 3 and Fig. 4a. c, Displacement of the edge two spins and simultaneous squeezing of the middle spins for the four ions configuration presented in Fig. 4b. The simultaneous squeezing scales the displacement generated by the fourth spin by a spin-dependent factor \(\exp ({\hat{\sigma }}_{x}^{(2)}\xi +{\hat{\sigma }}_{x}^{(3)}\zeta\,\, )\) as seen from the identity \({S}^{(m)}(-\xi ){D}_{p}^{(n)}(\pm \alpha ){S}^{(m)}(\xi )={D}_{p}^{(n)}(\pm {e}^{{\hat{\sigma }}_{x}^{(m)}\xi }\alpha )\). The operators \({D}_{p}^{(n)}(\pm \alpha )\) and \({D}_{q}^{(n)}(\pm \alpha )\) denote displacement of the target phonon mode via the nth ion by ± α along the p and q coordinates respectively. S(m)( ± ξ) denotes the squeezing operator acting on ion m and \({R}_{\theta }^{(n)}(\pm \pi )\) denotes short single-qubit π-pulses acting on the n th ion, which commute with the spin-dependent displacement operations and which correct for slowly-varying uncompensated Stark shifts without altering the target state. See Methods for further details.

Supplementary information

Supplementary Information

Supplementary Note 1 and Figs. 1–4.

Source data

Source Data Fig. 2

Data for Fig. 2a–c.

Source Data Fig. 3

Data for Fig. 3a,b.

Source Data Fig. 4

Data for Fig. 4a,b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katz, O., Feng, L., Risinger, A. et al. Demonstration of three- and four-body interactions between trapped-ion spins. Nat. Phys. 19, 1452–1458 (2023). https://doi.org/10.1038/s41567-023-02102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02102-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing