Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The emergence of global phase coherence from local pairing in underdoped cuprates

Abstract

In conventional metallic superconductors such as aluminium, the large number of weakly bounded Cooper pairs become phase-coherent as soon as they start to form. The cuprate high-temperature superconductors belong to a different category because, being doped Mott insulators, they are known to have low superfluid density and are therefore susceptible to phase fluctuations. It has been proposed that pairing and phase coherence may occur separately in cuprates, and that the measured critical temperature corresponds to the phase-coherence temperature controlled by the superfluid density. Here we examine the evolution of pairing and phase-ordering in underdoped cuprates, and find that a chequerboard plaquette pattern of charge order plays a crucial role, such that the global phase coherence is established once its spatial occupation exceeds a threshold. We make these observations via scanning tunnelling microscopy on underdoped Bi2LaxSr2 − xCuO6 + δ. We observe a smooth crossover from the Mott insulator to superconductor on small islands that have chequerboard order. Each chequerboard plaquette contains approximately two holes and exhibits a stripy internal structure that has a strong influence on the superconducting spectroscopic features. The local spectra remain qualitatively the same across the insulator-to-superconductor transition, and the quasiparticle interference becomes long-ranged.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase diagram and characterization of three underdoped Bi-2201 samples.
Fig. 2: Evolution of dI/dV spectra on the p = 0.08 and 0.11 samples.
Fig. 3: Periodic gap features on the p = 0.08 and 0.11 samples.
Fig. 4: Quasiparticle interferences and establishment of long-range phase coherence across the insulator–superconductor phase boundary.
Fig. 5: Evolution of QPI wavevectors.

Similar content being viewed by others

Data availability

Data are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  Google Scholar 

  2. Emery, V. & Kivelson, S. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    Article  ADS  Google Scholar 

  3. Uemura, Y. et al. Universal correlations between Tc and ns/m* (carrier density over effective mass) in high-Tc cuprate superconductors. Phys. Rev. Lett. 62, 2317–2320 (1989).

    Article  ADS  Google Scholar 

  4. Homes, C. et al. A universal scaling relation in high-temperature superconductors. Nature 430, 539–541 (2004).

    Article  ADS  Google Scholar 

  5. Bozovic, I., He, X., Wu, J. & Bollinger, A. T. Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309–311 (2016).

    Article  ADS  Google Scholar 

  6. Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8 + δ. Nature 398, 221–223 (1999).

    Article  ADS  Google Scholar 

  7. Wang, Y. et al. Field-enhanced diamagnetism in the pseudogap state of the cuprate Bi2Sr2CaCu2O8 + δ superconductor in an intense magnetic field. Phys. Rev. Lett. 95, 247002 (2005).

    Article  ADS  Google Scholar 

  8. Li, L., Checkelsky, J., Komiya, S., Ando, Y. & Ong, N. Low-temperature vortex liquid in La2 − xSrxCuO4. Nat. Phys. 3, 311–314 (2007).

    Article  Google Scholar 

  9. Lee, J. et al. Spectroscopic fingerprint of phase-incoherent superconductivity in the underdoped Bi2Sr2CaCu2O8 + δ. Science 325, 1099–1103 (2009).

    Article  ADS  Google Scholar 

  10. Kohsaka, Y. et al. How Cooper pairs vanish approaching the Mott insulator in Bi2Sr2CaCu2O8 + δ. Nature 454, 1072–1078 (2008).

    Article  ADS  Google Scholar 

  11. Gomes, K. K. et al. Visualizing pair formation on the atomic scale in the high-Tc superconductor Bi2Sr2CaCu2O8 + δ. Nature 447, 569–572 (2007).

    Article  ADS  Google Scholar 

  12. Pasupathy, A. N. et al. Electronic origin of the inhomogeneous pairing interaction in the high-Tc superconductor Bi2Sr2CaCu2O8 + δ. Science 320, 196–201 (2008).

    Article  ADS  Google Scholar 

  13. Kugler, M., Fischer, O., Renner, C., Ono, S. & Ando, Y. Scanning tunneling spectroscopy of Bi2Sr2CuO6 + δ: new evidence for the common origin of the pseudogap and superconductivity. Phys. Rev. Lett. 86, 4911–4914 (2001).

    Article  ADS  Google Scholar 

  14. Loeser, A. et al. Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8 + δ. Science 273, 325–329 (1996).

    Article  ADS  Google Scholar 

  15. Ding, H. et al. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors. Nature 382, 51–54 (1996).

    Article  ADS  Google Scholar 

  16. Peng, Y. et al. Disappearance of nodal gap across the insulator–superconductor transition in a copper-oxide superconductor. Nat. Commun. 4, 2459 (2013).

    Article  ADS  Google Scholar 

  17. Ando, Y. et al. Metallic in-plane and divergent out-of-plane resistivity of a high-Tc cuprate in the zero-temperature limit. Phys. Rev. Lett. 77, 2065–2068 (1996).

    Article  ADS  Google Scholar 

  18. Ando, Y. et al. Normal-state Hall effect and the insulating resistivity of high-Tc cuprates at low temperatures. Phys. Rev. B 56, R8530–R8533 (1997).

    Article  ADS  Google Scholar 

  19. Fischer, Ø., Kugler, M., Maggio-Aprile, I., Berthod, C. & Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353–419 (2007).

    Article  ADS  Google Scholar 

  20. Yu, Y. et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8 + δ. Nature 575, 156–163 (2019).

    Article  ADS  Google Scholar 

  21. Anderson, P. W. & Ong, N. P. Theory of asymmetric tunneling in the cuprate superconductors. J. Phys. Chem. Solids 67, 1–5 (2006).

    Article  ADS  Google Scholar 

  22. Kohsaka, Y. et al. Visualization of the emergence of the pseudogap state and the evolution to superconductivity in a lightly hole-doped Mott insulator. Nat. Phys. 8, 534–538 (2012).

    Article  Google Scholar 

  23. Cai, P. et al. Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates. Nat. Phys. 12, 1047–1051 (2016).

    Article  Google Scholar 

  24. Emery, V. J., Kivelson, S. A. & Lin, H. Q. Phase separation in the t-J model. Phys. Rev. Lett. 64, 475–478 (1990).

    Article  ADS  Google Scholar 

  25. Battisti, I. et al. Universality of pseudogap and emergent order in lightly doped Mott insulators. Nat. Phys. 13, 21–25 (2016).

    Article  Google Scholar 

  26. Ruan, W. et al. Visualization of the periodic modulation of Cooper pairing in a cuprate superconductor. Nat. Phys. 14, 1178–1182 (2018).

    Article  Google Scholar 

  27. Li, X. et al. Evolution of charge and pair density modulations in overdoped Bi2Sr2CuO6 + δ. Phys. Rev. X 11, 011007 (2021).

    Google Scholar 

  28. Chatterjee, U. et al. Observation of a d-wave nodal liquid in highly underdoped Bi2Sr2CaCu2O8 + δ. Nat. Phys. 6, 99–103 (2009).

    Article  Google Scholar 

  29. Doiron-Leyraud, N. et al. Onset of a Boson mode at the superconducting critical point of underdoped YBa2Cu3Oy. Phys. Rev. Lett. 97, 207001 (2006).

    Article  ADS  Google Scholar 

  30. Shi, X. et al. Emergence of superconductivity from the dynamically heterogeneous insulating state in La2 − xSrxCuO4. Nat. Mater. 12, 47–51 (2013).

    Article  ADS  Google Scholar 

  31. Peng, Y. Y. et al. Direct observation of charge order in underdoped and optimally doped Bi2(Sr, La)2CuO6 + δ by resonant inelastic X-ray scattering. Phys. Rev. B 94, 184511 (2016).

    Article  ADS  Google Scholar 

  32. Comin, R. et al. Charge order driven by Fermi-arc instability in Bi2Sr2 − xLaxCuO6 + δ. Science 343, 390–392 (2014).

    Article  ADS  Google Scholar 

  33. Wise, W. et al. Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Nat. Phys. 4, 696–699 (2008).

    Article  Google Scholar 

  34. Webb, T. A. et al. Density wave probes cuprate quantum phase transition. Phys. Rev. X 9, 021021 (2019).

    Google Scholar 

  35. Hanaguri, T. et al. Quasiparticle interference and superconducting gap in Ca2 − xNaxCuO2Cl2. Nat. Phys. 3, 865–871 (2007).

    Article  Google Scholar 

  36. Wang, Q.-H. & Lee, D.-H. Quasiparticle scattering interference in high-temperature superconductors. Phys. Rev. B 67, 020511 (2003).

    Article  ADS  Google Scholar 

  37. Hoffman, J. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8 + δ. Science 297, 1148–1151 (2002).

    Article  ADS  Google Scholar 

  38. Hanaguri, T. et al. Coherence factors in a high-Tc cuprate probed by quasi-particle scattering off vortices. Science 323, 923–926 (2009).

    Article  ADS  Google Scholar 

  39. Fujita, K. et al. Bogoliubov angle and visualization of particle-hole mixture in superconductors. Phys. Rev. B 78, 054510 (2008).

    Article  ADS  Google Scholar 

  40. Chubukov, A. V., Norman, M. R., Millis, A. J. & Abrahams, E. Gapless pairing and the Fermi arc in the cuprates. Phys. Rev. B 76, 180501 (2007).

    Article  ADS  Google Scholar 

  41. Wulin, D., He, Y., Chien, C.-C., Morr, D. K. & Levin, K. Model for the temperature dependence of the quasiparticle interference pattern in the measured scanning tunneling spectra of underdoped cuprate superconductors. Phys. Rev. B 80, 134504 (2009).

    Article  ADS  Google Scholar 

  42. Imry, Y. & Strongin, M. Destruction of superconductivity in granular and highly disordered metals. Phys. Rev. B 24, 6353–6360 (1981).

    Article  ADS  Google Scholar 

  43. Imry, Y., Strongin, M. & Homes, C. nsTc correlations in granular superconductors. Phys. Rev. Lett. 109, 067003 (2012).

    Article  ADS  Google Scholar 

  44. Imry, Y., Strongin, M. & Homes, C. An inhomogeneous Josephson phase in thin-film and high-Tc superconductors. J. Phys. C Superconductivity 468, 288–293 (2008).

    Article  ADS  Google Scholar 

  45. Zuev, Y., Kim, M. S. & Lemberger, T. R. Correlation between superfluid density and Tc of underdoped YBa2Cu3O6 + x near the superconductor-insulator transition. Phys. Rev. Lett. 95, 137002 (2005).

    Article  ADS  Google Scholar 

  46. Haviland, D., Liu, Y. & Goldman, A. Onset of superconductivity in the two-dimensional limit. Phys. Rev. Lett. 62, 2180–2183 (1989).

    Article  ADS  Google Scholar 

  47. Yazdani, A. & Kapitulnik, A. Superconducting-insulating transition in two-dimensional α-MoGe thin films. Phys. Rev. Lett. 74, 3037–3040 (1995).

    Article  ADS  Google Scholar 

  48. Mason, N. & Kapitulnik, A. Dissipation effects on the superconductor-insulator transition in 2D superconductors. Phys. Rev. Lett. 82, 5341–5344 (1999).

    Article  ADS  Google Scholar 

  49. Zaanen, J. & Gunnarsson, O. Charged magnetic domain lines and the magnetism of high-Tc oxides. Phys. Rev. B 40, 7391–7394 (1989).

    Article  ADS  Google Scholar 

  50. Tranquada, J., Sternlieb, B., Axe, J., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  51. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

    Article  ADS  Google Scholar 

  52. Tranquada, J. M., Dean, M. P. & Li, Q. Superconductivity from charge order in cuprates. J. Phys. Soc. Jpn 90, 111002 (2021).

    Article  ADS  Google Scholar 

  53. Jiang, H.-C. & Kivelson, S. A. Stripe order enhanced superconductivity in the Hubbard model. Proc. Natl Acad. Sci. USA 119, e2109406119 (2022).

    Article  Google Scholar 

  54. Zhao, J.-Y., Chen, S. A., Zhang, H.-K. & Weng, Z.-Y. Two-hole ground state: dichotomy in pairing symmetry. Phys. Rev. X 12, 011062 (2022).

    Google Scholar 

  55. Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Z.Y. Weng, G.M. Zhang and C.L. Song for helpful discussions and technical support. This work is supported by the Basic Science Center Project of NSFC (grant no. 52388201), the Innovation Program for Quantum Science and Technology (grant no. 2021ZD0302502), NSFC grant no. 11888101 and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB25000000). Yayu Wang is supported by the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and X.Z. supervised the project. H.Y. and Y.C. prepared the single crystal. S.Y., C.Z. and M.X. carried out the STM experiments under the supervision of Y.W. Z.D., Y.J. and S.Y. performed the transport experiments. S.Y. and Y.W. prepared the manuscript, with comments from all authors.

Corresponding author

Correspondence to Yayu Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary sections 1–12 and Figs. 1–15.

Source data

Source Data Fig. 1

Temperature dependent resistance curve and spatially averaged spectra of three samples.

Source Data Fig. 2

Linecut spectra, alpha cluster analysis and corresponding 2nd derivative curves of three samples.

Source Data Fig. 3

Linecut spectra of p = 0.08 and p = 0.11 samples.

Source Data Fig. 5

Extracted QPI wavevectors of the three samples in Fig. 5a,b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, S., Zou, C., Yan, H. et al. The emergence of global phase coherence from local pairing in underdoped cuprates. Nat. Phys. 19, 1301–1307 (2023). https://doi.org/10.1038/s41567-023-02100-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02100-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing