Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anderson localization of electromagnetic waves in three dimensions

Abstract

Anderson localization is a halt of diffusive wave propagation in disordered systems. Despite extensive studies over the past 40 years, Anderson localization of light in three dimensions has remained elusive, leading to the question of its very existence. Recent advances have enabled finite-difference time-domain calculations to be sped up by orders of magnitude, allowing us to conduct brute-force numerical simulations of light transport in fully disordered three-dimensional systems with unprecedented dimension and refractive index difference. We show numerically three-dimensional localization of vector electromagnetic waves in random aggregates of overlapping metallic spheres, in sharp contrast to the absence of localization for dielectric spheres with a refractive index up to 10 in air. Our work opens a wide range of avenues in both fundamental research related to Anderson localization and potential applications using three-dimensional localized light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Absence of non-diffusive transport in random dielectric systems with a refractive index of 3.5.
Fig. 2: AL of light in 3D disordered PEC.
Fig. 3: The transition from diffusion to AL in 3D disordered PEC.
Fig. 4: Arrest of transverse spreading of transmitted beam in 3D localized PEC systems.

Similar content being viewed by others

Data availability

Figures reported in this work, containing the source data, are available via download from https://scholarsmine.mst.edu/phys_facwork/2259/. All other data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The simulation project and associated codes can be found at https://www.flexcompute.com/userprojects/anderson-localization-of-electromagnetic-waves-in-three-dimensions. A Tidy3D software license can be requested from Flexcompute Inc to reproduce simulation results.

References

  1. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  Google Scholar 

  2. Mott, N. Electrons in disordered structures. Adv. Phys. 16, 49–144 (1967).

    Article  ADS  Google Scholar 

  3. Kramer, B. & MacKinnon, A. Localization: theory and experiment. Rep. Prog. Phys. 56, 1469–1564 (1993).

    Article  ADS  Google Scholar 

  4. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  ADS  Google Scholar 

  5. Billy, J. et al. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453, 891–894 (2008).

    Article  ADS  Google Scholar 

  6. Jendrzejewski, F. et al. Three-dimensional localization of ultracold atoms in an optical disordered potential. Nat. Phys. 8, 398–403 (2012).

    Article  Google Scholar 

  7. John, S. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett. 53, 2169–2172 (1984).

    Article  ADS  Google Scholar 

  8. Anderson, P. W. The question of classical localization. A theory of white paint? Philos. Mag. B 52, 505–509 (1985).

    Article  ADS  Google Scholar 

  9. Chabanov, A. A., Stoytchev, M. & Genack, A. Z. Statistical signatures of photon localization. Nature 404, 850–853 (2000).

    Article  ADS  Google Scholar 

  10. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    Article  ADS  Google Scholar 

  11. Segev, M., Silberberg, Y. & Christodoulides, D. N. Anderson localization of light. Nat. Photonics 7, 197–204 (2013).

    Article  ADS  Google Scholar 

  12. Kirkpatrick, T. R. Localization of acoustic waves. Phys. Rev. B 31, 5746–5755 (1985).

    Article  ADS  Google Scholar 

  13. Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. & van Tiggelen, B. A. Localization of ultrasound in a three-dimensional elastic network. Nat. Phys. 4, 945–948 (2008).

    Article  Google Scholar 

  14. Guazzelli, E., Guyon, E. & Souillard, B. On the localization of shallow water waves by random bottom. J. Phys. Lett. 44, 837–841 (1983).

    Article  Google Scholar 

  15. Sheng, P., White, B., Zhang, Z. Q. & Papanicolaou, G. in Scattering and Localization of Classical Waves in Random Media, Directions in Condensed Matter Physics (ed. Sheng, P.) 563–619 (World Scientific, 1990).

  16. Rothstein, I. Z. Gravitational Anderson localization. Phys. Rev. Lett. 110, 011601 (2013).

    Article  ADS  Google Scholar 

  17. John, S. Localization of light. Phys. Today 44, 32–40 (1991).

    Article  ADS  Google Scholar 

  18. Sheng, P. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Springer, 2006).

  19. Lagendijk, A., van Tiggelen, B. & Wiersma, D. S. Fifty years of Anderson localization. Phys. Today 62, 24–29 (2009).

    Article  Google Scholar 

  20. Ioffe, A. F. & Regel, A. R. Non-crystalline, amorphous, and liquid electronic semiconductors. Prog. Semicond. 4, 237–291 (1960).

    Google Scholar 

  21. Haberko, J., Froufe-Perez, L. S. & Scheffold, F. Transition from light diffusion to localization in three-dimensional amorphous dielectric networks near the band edge. Nat. Commun. 11, 4867 (2020).

    Article  ADS  Google Scholar 

  22. van der Beek, T., Barthelemy, P., Johnson, P. M., Wiersma, D. S. & Lagendijk, A. Light transport through disordered layers of dense gallium arsenide submicron particles. Phys. Rev. B 85, 115401 (2012).

    Article  ADS  Google Scholar 

  23. Sperling, T. et al. Can 3D light localization be reached in ‘white paint’? N. J. Phys. 18, 013039 (2016).

    Article  Google Scholar 

  24. Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).

    Article  ADS  Google Scholar 

  25. Skipetrov, S. E. & Page, J. H. Red light for Anderson localization. N. J. Phys. 18, 021001 (2016).

    Article  Google Scholar 

  26. Skipetrov, S. E. & Sokolov, I. M. Absence of Anderson localization of light in a random ensemble of point scatterers. Phys. Rev. Lett. 112, 023905 (2014).

    Article  ADS  Google Scholar 

  27. van Tiggelen, B. A. & Skipetrov, S. E. Longitudinal modes in diffusion and localization of light. Phys. Rev. B 103, 174204 (2021).

    Article  ADS  Google Scholar 

  28. Cobus, L. A., Maret, G. & Aubry, A. Crossover from renormalized to conventional diffusion near the three-dimensional Anderson localization transition for light. Phys. Rev. B 106, 014208 (2022).

    Article  ADS  Google Scholar 

  29. Genack, A. Z. & Garcia, N. Observation of photon localization in a three-dimensional disordered system. Phys. Rev. Lett. 66, 2064–2067 (1991).

    Article  ADS  Google Scholar 

  30. Watson Jr, G., Fleury, P. & McCall, S. Searching for photon localization in the time domain. Phys. Rev. Lett. 58, 945 (1987).

    Article  ADS  Google Scholar 

  31. Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673 (1997).

    Article  ADS  Google Scholar 

  32. Störzer, M., Gross, P., Aegerter, C. M. & Maret, G. Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96, 063904 (2006).

    Article  ADS  Google Scholar 

  33. Sperling, T., Bührer, W., Aegerter, C. M. & Maret, G. Direct determination of the transition to localization of light in three dimensions. Nat. Photonics 7, 48–52 (2013).

    Article  ADS  Google Scholar 

  34. Scheffold, F., Lenke, R., Tweer, R. & Maret, G. Localization or classical diffusion of light? Nature 398, 206–207 (1999).

    Article  ADS  Google Scholar 

  35. Wiersma, D. S., Rivas, J. G., Bartolini, P., Lagendijk, A. & Righini, R. Reply: Localization or classical diffusion of light? Nature 398, 207–207 (1999).

    Article  ADS  Google Scholar 

  36. Scheffold, F. & Wiersma, D. Inelastic scattering puts in question recent claims of Anderson localization of light. Nat. Photonics 7, 934 (2013).

    Article  ADS  Google Scholar 

  37. Gentilini, S., Fratalocchi, A., Angelani, L., Ruocco, G. & Conti, C. Ultrashort pulse propagation and the Anderson localization. Opt. Lett. 34, 130–132 (2009).

    Article  ADS  Google Scholar 

  38. Pattelli, L., Egel, A., Lemmer, U. & Wiersma, D. S. Role of packing density and spatial correlations in strongly scattering 3D systems. Optica 5, 1037–1045 (2018).

    Article  ADS  Google Scholar 

  39. Flexcompute Inc. https://flexcompute.com (2021).

  40. Hughes, T. W., Minkov, M., Liu, V., Yu, Z. & Fan, S. A perspective on the pathway toward full wave simulation of large area metalenses. Appl. Phys. Lett. 119, 150502 (2021).

    Article  ADS  Google Scholar 

  41. Lu, L., Joannopoulos, J. D. & Soljacic, M. Topological photonics. Nat. Photonics 8, 821–829 (2014).

    Article  ADS  Google Scholar 

  42. Stützer, S. et al. Photonic topological Anderson insulators. Nature 560, 461–465 (2018).

    Article  ADS  Google Scholar 

  43. Sapienza, L. et al. Cavity quantum electrodynamics with Anderson-localized modes. Science 327, 1352–1355 (2010).

    Article  ADS  Google Scholar 

  44. Wiersma, D. S. Random quantum networks. Science 327, 1333–1334 (2010).

    Article  Google Scholar 

  45. Cao, H. & Eliezer, Y. Harnessing disorder for photonic device applications. Appl. Phys. Rev. 9, 011309 (2022).

    Article  ADS  Google Scholar 

  46. Akkermans, E. & Montambaux, G. Mesoscopic Physics of Electrons and Photons (Cambridge Univ. Press, 2007).

    Book  MATH  Google Scholar 

  47. van de Hulst, H. C. Light Scattering by Small Particles (Dover, 1981).

    Google Scholar 

  48. Skipetrov, S. E. & van Tiggelen, B. A. Dynamics of Anderson localization in open 3D media. Phys. Rev. Lett. 96, 043902 (2006).

    Article  ADS  Google Scholar 

  49. Thouless, D. J. Electrons in disordered systems and the theory of localization. Phys. Rep. 13, 93–142 (1974).

    Article  ADS  Google Scholar 

  50. Pendry, J. B. Quasi-extended electron states in strongly disordered systems. J. Phys. C 20, 733–742 (1987).

    Article  ADS  Google Scholar 

  51. Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979).

    Article  ADS  Google Scholar 

  52. Müller, C. A. & Delande, D. In Ultracold Gases and Quantum Information: Lecture Notes of the Les Houches Summer School in Singapore (eds. Miniatura, C.) Chapter 9 (Oxford Univ. Press, 2011).

  53. Cherroret, N., Skipetrov, S. E. & van Tiggelen, B. A. Transverse confinement of waves in three-dimensional random media. Phys. Rev. E 82, 056603 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation under grant nos. DMR-1905442 and DMR-1905465 and the Office of Naval Research (ONR) under grant no. N00014-20-1-2197. We thank S. Fan and B. van Tiggelen for enlightening discussions. A.Y. expresses gratitude to LPMMC (CNRS) for hospitality.

Author information

Authors and Affiliations

Authors

Contributions

A.Y. performed numerical simulations, analysed the data and compiled all results. S.E.S. conducted theoretical study and guided data interpretation. T.W.H. and M.M. implemented the hardware-accelerated FDTD method and aided in the setup of the numerical simulations. Z.Y. and H.C. initiated this project and supervised the research. A.Y. wrote the first draft, S.E.S. and H.C. revised the content and scope, and T.W.H., M.M. and Z.Y. edited the manuscript. All co-authors discussed and approved the content.

Corresponding authors

Correspondence to Alexey Yamilov, Zongfu Yu or Hui Cao.

Ethics declarations

Competing interests

T.W.H., M.M. and Z.Y. have financial interest in Flexcompute Inc., which develops the software Tidy3D used in this work.

Peer review

Peer review information

Nature Physics thanks Luis Froufe-Pérez, Diederik Wiersma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary material, Table 1, Figs. 1–20 and Videos 1−6.

Supplementary Video 1

Variation of the xz cross section of intensity inside f = 15% PEC aggregate with wavelength.

Supplementary Video 2

Variation of the xz cross section of intensity inside f = 48% PEC aggregate with wavelength.

Supplementary Video 3

Transverse spreading of transmitted beam in n = 3.5, f = 29% dielectric aggregate with time.

Supplementary Video 4

Transverse spreading of transmitted beam in f = 15% PEC aggregate with time.

Supplementary Video 5

Halt of transverse spreading of transmitted beam in f = 48% PEC aggregate with time.

Supplementary Video 6

3D localized mode in disordered PEC slab with f = 33%.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamilov, A., Skipetrov, S.E., Hughes, T.W. et al. Anderson localization of electromagnetic waves in three dimensions. Nat. Phys. 19, 1308–1313 (2023). https://doi.org/10.1038/s41567-023-02091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02091-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing