Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Laser-induced forced evaporative cooling of molecular anions below 4 K

Abstract

The study of cold and controlled molecular ions has been of key importance for a wide range of applications, such as the production of cold antihydrogen, creation and study of anionic Coulomb crystals and in atmospheric research and astrochemistry. However, the commonly used anion cooling technique via collisions with a buffer gas is limited by the temperature of the used cryogenic cooling medium. Here we demonstrate the forced evaporative cooling of anions via a laser beam with photon energies far above the photodetachment threshold of the anion. We cool an anionic ensemble from an initial temperature of 370(12) K down to 2.2(8) K. This results in a three orders of magnitude increase in the phase-space density of the ions, approaching the near-strong Coulomb coupling regime. We present an analysis of the cooling dynamics through a thermodynamic model that includes the role of intrinsic collisional heating, without any fitting parameters. This technique can be used to cool any anionic species below liquid helium temperature, providing a tool to push the frontiers of anion cooling below state-of-the-art temperature regimes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup and thermalization dynamics under position-dependent photodetachment.
Fig. 2: Forced evaporative cooling via photodetachment.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request. Source data are provided with this paper.

Code availability

The codes and analysis files that support the findings of this study are available from the corresponding author upon request.

References

  1. Tomza, M. et al. Cold hybrid ion-atom systems. Rev. Mod. Phys. 91, 035001 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  2. Puri, P. et al. Synthesis of mixed hypermetallic oxide BaOCa+ from laser-cooled reagents in an atom-ion hybrid trap. Science 357, 1370–1375 (2017).

    Article  ADS  Google Scholar 

  3. Hall, F. H. J. & Willitsch, S. Millikelvin reactive collisions between sympathetically cooled molecular ions and laser-cooled atoms in an ion-atom hybrid trap. Phys. Rev. Lett. 109, 233202 (2012).

    Article  ADS  Google Scholar 

  4. Germann, M., Tong, X. & Willitsch, S. Observation of electric-dipole-forbidden infrared transitions in cold molecular ions. Nat. Phys. 10, 820–824 (2014).

    Article  Google Scholar 

  5. Kilaj, A. et al. Observation of different reactivities of para and ortho-water towards trapped diazenylium ions. Nat. Commun. 9, 2096 (2018).

    Article  ADS  Google Scholar 

  6. Härter, A. et al. Population distribution of product states following three-body recombination in an ultracold atomic gas. Nat. Phys. 9, 512–517 (2013).

    Article  ADS  Google Scholar 

  7. Wolf, J. et al. State-to-state chemistry for three-body recombination in an ultracold rubidium gas. Science 358, 921–924 (2017).

    Article  ADS  Google Scholar 

  8. Puri, P. et al. Reaction blockading in a reaction between an excited atom and a charged molecule at low collision energy. Nat. Chem. 11, 615–621 (2019).

    Article  Google Scholar 

  9. Hudson, E. R. Sympathetic cooling of molecular ions with ultracold atoms. EPJ Techn. Instrum. 3, 8 (2016).

    Article  Google Scholar 

  10. Willitsch, S. Coulomb-crystallised molecular ions in traps: methods, applications, prospects. Int. Rev. Phys. Chem. 31, 175–199 (2012).

    Article  Google Scholar 

  11. Rellergert, W. G. et al. Evidence for sympathetic vibrational cooling of translationally cold molecules. Nature 495, 490–494 (2013).

    Article  ADS  Google Scholar 

  12. Stoecklin, T. et al. Explanation of efficient quenching of molecular ion vibrational motion by ultracold atoms. Nat. Commun. 7, 11234 (2016).

    Article  ADS  Google Scholar 

  13. Hauser, D. et al. Rotational state-changing cold collisions of hydroxyl ions with helium. Nat. Phys. 11, 467–470 (2015).

    Article  ADS  Google Scholar 

  14. McCarthy, M. C., Gottlieb, C. A., Gupta, H. & Thaddeus, P. Laboratory and astronomical identification of the negative molecular ion C6H. Astrophys. J. 652, L141–L144 (2006).

    Article  ADS  Google Scholar 

  15. Herbst, E. Can negative molecular ions be detected in dense interstellar clouds? Nature 289, 656–657 (1981).

    Article  ADS  Google Scholar 

  16. Bastian, B., Michaelsen, T., Meyer, J. & Wester, R. Anionic carbon chain growth in reactions of \({\mathrm{C}}_{2}^{-}\), \({\mathrm{C}}_{4}^{-}\), \({\mathrm{C}}_{6}^{-}\), C2H,C4H, and C6H with C2H2. Astrophys. J. 878, 162 (2019).

    Article  ADS  Google Scholar 

  17. Kreckel, H. et al. Experimental results for H2 formation from H and H and implications for first star formation. Science 329, 69–71 (2010).

    Article  Google Scholar 

  18. Gerlich, D. et al. Ion trap studies of H + H → H2 + e between 10 and 135 K. Astrophys. J. 749, 22 (2012).

  19. Otto, R., Mikosch, J., Trippel, S., Weidemüller, M. & Wester, R. Nonstandard behavior of a negative ion reaction at very low temperatures. Phys. Rev. Lett. 101, 063201 (2008).

    Article  ADS  Google Scholar 

  20. Gianturco, F. A., Yurtsever, E., Satta, M. & Wester, R. Modeling ionic reactions at interstellar temperatures: the case of \({\mathrm{NH}}_{2}^{-}\) + H2 NH3 + H. J. Phys. Chem. A 123, 9905–9918 (2019).

    Article  Google Scholar 

  21. Yzombard, P., Hamamda, M., Gerber, S., Doser, M. & Comparat, D. Laser cooling of molecular anions. Phys. Rev. Lett. 114, 213001 (2015).

    Article  ADS  Google Scholar 

  22. Jordan, E., Cerchiari, G., Fritzsche, S. & Kellerbauer, A. High-resolution spectroscopy on the laser-cooling candidate La. Phys. Rev. Lett. 115, 113001 (2015).

    Article  ADS  Google Scholar 

  23. Gerber, S., Fesel, J., Doser, M. & Comparat, D. Photodetachment and Doppler laser cooling of anionic molecules. New J. Phys. 20, 023024 (2018).

    Article  ADS  Google Scholar 

  24. Wan, M.-j, Huang, D.-h, Yu, Y. & Zhang, Y.-g Laser cooling of the OH molecular anion in a theoretical investigation. Phys. Chem. Chem. Phys. 19, 27360–27367 (2017).

    Article  Google Scholar 

  25. Crubellier, A. Theory of laser evaporative cooling of trapped negative ions. I. Harmonically bound ions and RF traps. J. Phys. B: At. Mol. Opt. Phys. 23, 3585–3607 (1990).

    Article  ADS  Google Scholar 

  26. Cerchiari, G., Yzombard, P. & Kellerbauer, A. Laser-assisted evaporative cooling of anions. Phys. Rev. Lett. 123, 103201 (2019).

    Article  ADS  Google Scholar 

  27. Andresen, G. B. et al. Evaporative cooling of antiprotons to cryogenic temperatures. Phys. Rev. Lett. 105, 013003 (2010).

    Article  ADS  Google Scholar 

  28. Nötzold, M. et al. Thermometry in a multipole ion trap. Appl. Sci. 10, 5264 (2020).

    Article  Google Scholar 

  29. Hlavenka, P. et al. Absolute photodetachment cross section measurements of the O and OH anion. J. Chem. Phys. 130, 061105 (2009).

  30. Spitzer, L. Physics of Fully Ionized Gases 2nd edn (Interscience Publication, 1967).

  31. Ichimaru, S. & Tanaka, S. Generalized viscoelastic theory of the glass transition for strongly coupled, classical, one-component plasmas. Phys. Rev. Lett. 56, 2815–2818 (1986).

    Article  ADS  Google Scholar 

  32. Gilbert, S. L., Bollinger, J. J. & Wineland, D. J. Shell-structure phase of magnetically confined strongly coupled plasmas. Phys. Rev. Lett. 60, 2022–2025 (1988).

    Article  ADS  Google Scholar 

  33. Davis, K. B., Mewes, M. O. & Ketterle, W. An analytical model for evaporative cooling of atoms. Appl. Phys. B: Lasers Opt. 60, 155–159 (1995).

    Article  ADS  Google Scholar 

  34. Lauderdale, J. G., McCurdy, C. W. & Hazi, A. U. Conversion of bound states to resonances with changing internuclear distance in molecular anions. J. Chem. Phys. 79, 2200–2205 (1983).

    Article  ADS  Google Scholar 

  35. Sanche, L. Low-energy electron scattering from molecules on surfaces. J. Phys. B: At. Mol. Opt. Phys. 23, 1597–1624 (1990).

    Article  ADS  Google Scholar 

  36. Engel, F. et al. Precision spectroscopy of negative-ion resonances in ultralong-range Rydberg molecules. Phys. Rev. Lett. 123, 073003 (2019).

    Article  ADS  Google Scholar 

  37. Weckesser, P. et al. Observation of Feshbach resonances between a single ion and ultracold atoms. Nature 600, 429–433 (2021).

    Article  ADS  Google Scholar 

  38. Kas, M., Loreau, J., Liévin, J. & Vaeck, N. Reactivity of hydrated hydroxide anion clusters with H and Rb: an ab initio study. J. Phys. Chem. A 123, 8893–8906 (2019).

    Article  Google Scholar 

  39. Hassan, S. Z. et al. Associative detachment in anion-atom reactions involving a dipole-bound electron. Nat. Commun. 13, 818 (2022).

    Article  ADS  Google Scholar 

  40. Hassan, S. Z. et al. Quantum state-dependent anion-neutral detachment processes. J. Chem. Phys. 156, 094304 (2022).

    Article  ADS  Google Scholar 

  41. Trippel, S. et al. Photodetachment of cold OH in a multipole ion trap. Phys. Rev. Lett. 97, 193003 (2006).

    Article  ADS  Google Scholar 

  42. Smith, J. R., Kim, J. B. & Lineberger, W. C. High-resolution threshold photodetachment spectroscopy of OH. Phys. Rev. A 55, 2036–2043 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Deutsche Forschungsgemeinschaft (DFG) under project no. WE/2661/14-1 and the Austrian Science Fund (FWF) through project no. I3159-N36. M.W. acknowledges support from the DFG (German Research Foundation) under Germany’s Excellence Strategy EXC2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster).

Author information

Authors and Affiliations

Authors

Contributions

J.T. and S.Z.H. performed the experiments and data analysis. J.T. simulated the thermodynamical model. M.N. provided the simulations on temperature determination. E.S.E., R.W. and M.W. conceptualized the experiments. J.T. and S.Z.H. wrote the initial draft. All the authors edited and contributed in the preparation of the final manuscript.

Corresponding author

Correspondence to Matthias Weidemüller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Daniel Comparat and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–III, Figs. 1–3 and Table 1.

Supplementary Data 1

Source data for Supplementary Fig. 1.

Supplementary Data 2

Source data for Supplementary Fig. 2.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tauch, J., Hassan, S.Z., Nötzold, M. et al. Laser-induced forced evaporative cooling of molecular anions below 4 K. Nat. Phys. 19, 1270–1274 (2023). https://doi.org/10.1038/s41567-023-02084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02084-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing