Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Few-electron correlations after ultrafast photoemission from nanometric needle tips

Abstract

Free electrons are essential in such diverse applications as electron microscopes, accelerators and photoemission spectroscopy. However, the space charge effects of many electrons are often a problem and, when confined to extremely small space–time dimensions, even two electrons can interact strongly. Here we demonstrate that the resulting Coulomb repulsion can be highly advantageous, as it leads to strong electron–electron correlations. We show that femtosecond laser-emitted electrons from nanometric needle tips are highly anticorrelated in terms of energy because of dynamic Coulomb repulsion, with a visibility of 56%. We extract a mean energy splitting of 3.3 eV and a correlation decay time of 82 fs. The energy-filtered electrons display a sub-Poissonian number distribution with a second-order correlation function as small as g(2) = 0.34, implying that shot-noise-reduced pulsed electron beams can be realized by simple energy filtering. We also reach the strong-field regime of laser-driven electron emission and gain insights into how the electron correlations of the different electron classes (direct or rescattered) are influenced by the strong laser fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the experiment.
Fig. 2: Energy correlation in two-electron events.
Fig. 3: Second-order correlation maps and electron number distributions.
Fig. 4: Ultrafast temporal behaviour of the anticorrelations from a two-pulse measurement with adjustable time delay.
Fig. 5: Laser intensity dependence of the observed anticorrelation gap and strong-field effects.
Fig. 6: Energy gap size from quantum and semi-classical 1D simulations.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this Article and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bloch, J., Cavalleri, A., Galitski, V., Hafezi, M. & Rubio, A. Strongly correlated electron–photon systems. Nature 606, 41–48 (2022).

    ADS  Google Scholar 

  2. Kouzakov, K. A. & Berakdar, J. Photoinduced emission of Cooper pairs from superconductors. Phys. Rev. Lett. 91, 257007 (2003).

  3. Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission studies of quantum materials. Rev. Mod. Phys. 93, 025006 (2021).

  4. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet-Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    ADS  Google Scholar 

  5. Wallauer, R. et al. Tracing orbital images on ultrafast time scales. Science 371, 1056–1059 (2021).

    ADS  Google Scholar 

  6. Johnson, C. W. et al. Near-monochromatic tuneable cryogenic niobium electron field emitter. Phys. Rev. Lett. 129, 244802 (2022).

  7. Glaeser, R. M. How good can cryo-EM become? Nat. Methods 13, 28–32 (2015).

    Google Scholar 

  8. Magaña-Loaiza, O. S. & Boyd, R. W. Quantum imaging and information. Rep. Progr. Phys. 82, 124401 (2019).

    ADS  MathSciNet  Google Scholar 

  9. Feist, A. et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam. Ultramicroscopy 176, 63–73 (2017).

    Google Scholar 

  10. Arbouet, A., Caruso, G. M. & Houdellier, F. in Advances in Imaging and Electron Physics Vol. 207 (ed. Hawkes, P. W.) 1–72 (Elsevier, 2018).

  11. Zong, A. et al. Evidence for topological defects in a photoinduced phase transition. Nat. Phys. 15, 27–31 (2018).

    Google Scholar 

  12. England, R. J. et al. Dielectric laser accelerators. Rev. Mod. Phys. 86, 1337–1389 (2014).

    ADS  Google Scholar 

  13. Ludwig, M. et al. Sub-femtosecond electron transport in a nanoscale gap. Nat. Phys. 16, 341–345 (2019).

  14. Hergert, G. et al. Probing transient localized electromagnetic fields using low-energy point-projection electron microscopy. ACS Photon. 8, 2573–2580 (2021).

    Google Scholar 

  15. l’Huillier, A., Lompre, L. A., Mainfray, G. & Manus, C. Multiply charged ions induced by multiphoton absorption in rare gases at 0.53 μm. Phys. Rev. A 27, 2503–2512 (1983).

    ADS  Google Scholar 

  16. Weber, T. et al. Correlated electron emission in multiphoton double ionization. Nature 405, 658–661 (2000).

    ADS  Google Scholar 

  17. Becker, W., Liu, X., Ho, P. J. & Eberly, J. H. Theories of photoelectron correlation in laser-driven multiple atomic ionization. Rev. Mod. Phys. 84, 1011–1043 (2012).

    ADS  Google Scholar 

  18. Hommelhoff, P., Sortais, Y., Aghajani-Talesh, A. & Kasevich, M. A. Field emission tip as a nanometer source of free electron femtosecond pulses. Phys. Rev. Lett. 96, 077401 (2006).

  19. Ropers, C., Solli, D. R., Schulz, C. P., Lienau, C. & Elsaesser, T. Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Phys. Rev. Lett. 98, 043907 (2007).

    ADS  Google Scholar 

  20. Bormann, R., Gulde, M., Weismann, A., Yalunin, S. V. & Ropers, C. Tip-enhanced strong-field photoemission. Phys. Rev. Lett. 105, 147601 (2010).

    ADS  Google Scholar 

  21. Krüger, M., Lemell, C., Wachter, G., Burgdoerfer, J. & Hommelhoff, P. Attosecond physics phenomena at nanometric tips. J. Phys. B 51, 172001 (2018).

    ADS  Google Scholar 

  22. Thomas, S., Krüger, M., Förster, M., Schenk, M. & Hommelhoff, P. Probing of optical near-fields by electron rescattering on the 1 nm scale. Nano Letters 13, 4790–4794 (2013).

    ADS  Google Scholar 

  23. Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 559, 343–349 (2018).

    ADS  Google Scholar 

  24. Bach, N. et al. Coulomb interactions in high-coherence femtosecond electron pulses from tip emitters. Struct. Dynam. 6, 014301 (2019).

    Google Scholar 

  25. Tsarev, M., Ryabov, A. & Baum, P. Measurement of temporal coherence of free electrons by time-domain electron interferometry. Phys. Rev. Lett. 127, 165501 (2021).

    ADS  Google Scholar 

  26. Kuwahara, M. et al. Intensity interference in a coherent spin-polarized electron beam. Phys. Rev. Lett. 126, 125501 (2021).

    ADS  Google Scholar 

  27. Yudin, G. L. & Ivanov, M. Y. Nonadiabatic tunnel ionization: looking inside a laser cycle. Phys. Rev. A 64, 013409 (2001).

  28. Keramati, S., Brunner, W., Gay, T. J. & Batelaan, H. Non-Poissonian ultrashort nanoscale electron pulses. Phys. Rev. Lett. 127, 180602 (2021).

    ADS  Google Scholar 

  29. Berchera, I. R. & Degiovanni, I. P. Quantum imaging with sub-poissonian light: challenges and perspectives in optical metrology. Metrologia 56, 024001 (2019).

    ADS  Google Scholar 

  30. Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

    ADS  Google Scholar 

  31. Hommelhoff, P., Sortais, Y., Aghajani-Talesh, A. & Kasevich, M. A. Field emission tip as a nanometer source of free electron femtosecond pulses. Phys. Rev. Lett. 96, 077401 (2006).

    ADS  Google Scholar 

  32. Duchet, M. et al. Femtosecond laser induced resonant tunneling in an individual quantum dot attached to a nanotip. ACS Photon. 8, 505–511 (2021).

    Google Scholar 

  33. Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Google Scholar 

  34. Herink, G., Solli, D. R., Gulde, M. & Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012).

    ADS  Google Scholar 

  35. Paulus, G. G., Becker, W., Nicklich, W. & Walther, H. Rescattering effects in above-threshold ionization: a classical model. J. Phys. B 27, 703–708 (1994).

    ADS  Google Scholar 

  36. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    ADS  Google Scholar 

  37. Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    ADS  Google Scholar 

  38. Camus, N. et al. Attosecond correlated dynamics of two electrons passing through a transition state. Phys. Rev. Lett. 108, 073003 (2012).

    ADS  Google Scholar 

  39. Rudenko, A. et al. Correlated two-electron momentum spectra for strong-field nonsequential double ionization of He at 800 nm. Phys. Rev. Lett. 99, 263003 (2007).

  40. Staudte, A. et al. Binary and recoil collisions in strong field double ionization of helium. Phys. Rev. Lett. 99, 263002 (2007).

    ADS  Google Scholar 

  41. Kiesel, H., Renz, A. & Hasselbach, F. Observation of Hanbury Brown–Twiss anticorrelations for free electrons. Nature 418, 392–394 (2002).

    ADS  Google Scholar 

  42. Kodama, T., Osakabe, N. & Tonomura, A. Correlation in a coherent electron beam. Phys. Rev. A 83, 063616 (2011).

    ADS  Google Scholar 

  43. Haindl, R. et al. Coulomb-correlated electron number states in a transmission electron microscope beam. Nat. Phys. https://doi.org/10.1038/s41567-023-02067-7 (2023).

    Article  Google Scholar 

  44. Damm, A. Untersuchung der Elektronendynamik von Si(111) 7×7 und Entwicklung eines Flugzeitspektrometers für die Zeit- und Winkelaufgelöste Zweiphotonen-Photoemission. PhD thesis, Universität Marburg (2011).

  45. Jagutzki, O. et al. Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans. Nucl. Sci. 49, 2477–2483 (2002).

    ADS  Google Scholar 

  46. Ehberger, D. et al. Highly coherent electron beam from a laser-triggered tungsten needle tip. Phys. Rev. Lett. 114, 227601 (2015).

    ADS  Google Scholar 

  47. Fehre, K. et al. Absolute ion detection efficiencies of microchannel plates and funnel microchannel plates for multi-coincidence detection. Rev. Sci. Instrum. 89, 045112 (2018).

    ADS  Google Scholar 

  48. Seiffert, L., Paschen, T., Hommelhoff, P. & Fennel, T. High-order above-threshold photoemission from nanotips controlled with two-color laser fields. J. Phys. B 51, 134001 (2018).

    ADS  Google Scholar 

  49. Vogelsang, J. et al. Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons. Nano Lett. 15, 4685–4691 (2015).

    ADS  Google Scholar 

  50. Krüger, M. et al. Interaction of ultrashort laser pulses with metal nanotips: a model system for strong-field phenomena. New J. Phys. 14, 085019 (2012).

    ADS  Google Scholar 

  51. Maestri, J. J. V., Landau, R. H. & Páez, M. J. Two-particle Schrödinger equation animations of wave packet–wave packet scattering. Am. J. Phys. 68, 1113–1119 (2000).

    ADS  Google Scholar 

  52. Lougovski, P. & Batelaan, H. Quantum description and properties of electrons emitted from pulsed nanotip electron sources. Phys. Rev. A 84, 023417 (2011).

Download references

Acknowledgements

We thank A. Czasch for technical discussions on the delay-line detector and P. Dienstbier for discussions on the semi-classical simulation. This research was supported by the European Research Council (Consolidator Grant NearFieldAtto and Advanced Grant AccelOnChip) and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Project-ID 429529648 - TRR 306 QuCoLiMa (‘Quantum Cooperativity of Light and Matter’) and Sonderforschungsbereich 953 (‘Synthetic Carbon Allotropes’), Project-ID 182849149. J.H. acknowledges funding from the Max Planck School of Photonics.

Author information

Authors and Affiliations

Authors

Contributions

S.M. and J.H. performed the experiment, analysed the data and generated the plots. S.M. performed the semi-classical simulations and J.H. performed the quantum-mechanical simulations. All authors wrote the manuscript.

Corresponding author

Correspondence to Stefan Meier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Kasra Amini, Phillip Keathley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Measurement scheme for heralded of electrons.

Electron events triggered from a metal needle tip are energetically separated by an Omega filter. When the energy width of single electron events is smaller than the mean Coulomb energy splitting, the electrons can be separated after the omega filter. Single and two-electron events are then separated in absolute energy. The measurement of one electron in the energy region prohibited for single electron events, only possible for two-electron events, leads directly to the knowledge of the presence of a second electron. By post-selection a deterministic electron source is achieved, which can be used for quantum imaging.

Extended Data Fig. 2 Sketch of experimental setup.

Femtosecond laser pulses focused by an off-axis parabolic mirror (OAP) trigger electrons (blue) from a metal needle tip. The highly coherent electron beam is magnified by two quadrupoles by a factor of up to 10 (only one quadrupole shown here). The two quadrupoles can be moved by a 3-axis manipulation stage. The multi-hit capability of the delay-line detector allows us to measure the position x and y, and the time of flight for each electron individually.

Extended Data Fig. 3 Power scaling of n-electron events.

Shown is the laser power vs. the counts per laser shot on a double-logarithmic scale. Because of the multi-photon photoemission process, the electron emission probability P follows a power law \(P\propto {I}_{L}^{{n}_{{{{\bf{ph}}}}}}\), visible by the linear scaling in the double-logarithmic representation. Here, nph denotes the number of absorbed photons. The slopes are m = 2.8 ± 0.4 (one electron, red), m = 6.5 ± 0.5 (two electrons, blue) and 8.9 ± 0.7 (three electrons, green). The slope for the total emission (sum of all events) is m = 3.3 ± 0.4. The linear fits were weighted by the total count rate for each laser power. The inset shows the corresponding slopes for the one, two and three electron slopes with a linear fit (black line).

Source data

Extended Data Fig. 4 Second order correlation function \({g}^{(2)}({E}_{1},{E}_{2})=\frac{ < I({E}_{1})I({E}_{2}) > }{ < I({E}_{1}) > < I({E}_{2}) > }\) calculated for the energy map shown in Fig. 2(a).

A filter excluding data points with less than 5 counts per bin removes data points dominated by noise (gray mask).

Extended Data Fig. 5 Electron energy filtering to shape the emission statistics.

a) Explanation of the energy filter used in Fig. 3: a central energy is chosen (orange line) and then an interval of ± Ewindow/2 is used as filter area. (b) Experimental data shown in Fig. 3(a), with highlighted variables. (c) Fano factor for simulations from an average of 0.1 electron per pulse to 5 electrons per pulse being emitted. The insets show the resulting energy-filtered hit-distributions after propagation including Coulomb interactions.

Source data

Source Data Fig. 2

Measurement data.

Source Data Fig. 3

Measurement data.

Source Data Fig. 4

Measurement data.

Source Data Fig. 5

Measurement data.

Source Data Fig. 6

Simulation data.

Source Data Extended Data Fig. 3

Measurement data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meier, S., Heimerl, J. & Hommelhoff, P. Few-electron correlations after ultrafast photoemission from nanometric needle tips. Nat. Phys. 19, 1402–1409 (2023). https://doi.org/10.1038/s41567-023-02059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02059-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing