Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probabilistic error cancellation with sparse Pauli–Lindblad models on noisy quantum processors

Abstract

Noise in quantum computers can result in biased estimates of physical observables. Accurate bias-free estimates can be obtained using probabilistic error cancellation, an error-mitigation technique that effectively inverts well-characterized noise channels. Learning correlated noise channels in large quantum circuits, however, has been a major challenge and has severely hampered experimental realizations. Our work presents a practical protocol for learning and inverting a sparse noise model that is able to capture correlated noise and scales to large quantum devices. These advances allow us to demonstrate probabilistic error cancellation on a superconducting quantum processor, thereby providing a way to measure noise-free observables at larger circuit volumes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Context of the noise model.
Fig. 2: Learning the noise channel.
Fig. 3: Error-mitigated time evolution of Ising spin chains.
Fig. 4: Mitigation sampling overhead.

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request. Supplementary Fig. 7 in the supplementary information shows data representative of the performance of the cloud-based device ibm_hanoi, which is accessible online through the open-source Qiskit backend.

References

  1. Zhang, E. J. et al. High-performance superconducting quantum processors via laser annealing of transmon qubits. Sci. Adv. 8, eabi6690 (2022).

    Article  Google Scholar 

  2. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  ADS  Google Scholar 

  3. Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).

    Article  ADS  Google Scholar 

  4. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

  5. Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    Article  ADS  Google Scholar 

  6. Kim, Y. et al. Scalable error mitigation for noisy quantum circuits produces competitive expectation values. Nat. Phys. https://doi.org/10.1038/s41567-022-01914-3 (2023).

  7. Havlíček, Vojtěch et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).

    Article  ADS  Google Scholar 

  8. Schuld, M. & Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019).

    Article  ADS  Google Scholar 

  9. Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  10. Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017).

    Google Scholar 

  11. Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491–495 (2019).

    Article  ADS  Google Scholar 

  12. Endo, S., Benjamin, S. C. & Li, Y. Practical quantum error mitigation for near-future applications. Phys. Rev. X 8, 031027 (2018).

    Google Scholar 

  13. Guo, Y. & Yang, S. Quantum error mitigation via matrix product operators. PRX Quantum 3, 040313 (2022).

    Article  ADS  Google Scholar 

  14. Piveteau, C., Sutter, D. & Woerner, S. Quasiprobability decompositions with reduced sampling overhead. Npj Quantum Inf. 8, 12 (2022).

    Article  ADS  Google Scholar 

  15. Endo, S., Cai, Z., Benjamin, S. C. & Yuan, X. Hybrid quantum-classical algorithms and quantum error mitigation. J. Phys. Soc. Japan 90, 032001 (2021).

    Article  ADS  Google Scholar 

  16. Piveteau, C., Sutter, D., Bravyi, S., Gambetta, J. M. & Temme, K. Error mitigation for universal gates on encoded qubits. Phys. Rev. Lett. 127, 200505 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  17. Takagi, R. Optimal resource cost for error mitigation. Phys. Rev. Res. 3, 033178 (2021).

    Article  Google Scholar 

  18. Takagi, R., Endo, S., Minagawa, S. & Gu, M. Fundamental limits of quantum error mitigation. Npj Quantum Inf. 8, 114 (2022).

    Article  ADS  Google Scholar 

  19. Lostaglio, M. & Ciani, A. Error mitigation and quantum-assisted simulation in the error corrected regime. Phys. Rev. Lett. 127, 200506 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  20. Xiong, Y., Chandra, D., Ng, S. X. & Hanzo, L. Sampling overhead analysis of quantum error mitigation: uncoded vs. coded systems. IEEE Access 8, 228967–228991 (2020).

    Article  Google Scholar 

  21. Suzuki, Y., Endo, S., Fujii, K. & Tokunaga, Y. Quantum error mitigation as a universal error reduction technique: Applications from the NISQ to the fault-tolerant quantum computing eras. PRX Quantum 3, 010345 (2022).

    Article  ADS  Google Scholar 

  22. Song, C. et al. Quantum computation with universal error mitigation on a superconducting quantum processor. Sci. Adv. 5, eaaw5686 (2019).

    Article  ADS  Google Scholar 

  23. Zhang, S. et al. Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system. Nat. Commun. 11, 587 (2020).

    Article  ADS  Google Scholar 

  24. Strikis, A., Qin, D., Chen, Y., Benjamin, S. C. & Li, Y. Learning-based quantum error mitigation. PRX Quantum 2, 040330 (2021).

    Article  ADS  Google Scholar 

  25. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    Article  ADS  Google Scholar 

  26. Knill, E. Fault-tolerant postselected quantum computation: threshold analysis. Preprint at https://arxiv.org/abs/quant-ph/0404104 (2004).

  27. Kern, O., Alber, G. & Shepelyansky, D. L. Quantum error correction of coherent errors by randomization. Eur. Phys. J. D 32, 153–156 (2005).

    Article  ADS  Google Scholar 

  28. Geller, M. R. & Zhou, Z. Efficient error models for fault-tolerant architectures and the Pauli twirling approximation. Phys. Rev. A 88, 012314 (2013).

    Article  ADS  Google Scholar 

  29. Wallman, J. J. & Emerson, J. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A 94, 052325 (2016).

    Article  ADS  Google Scholar 

  30. Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002); https://doi.org/10.1093/acprof:oso/9780199213900.001.0001

  31. Sun, J. et al. Mitigating realistic noise in practical noisy intermediate-scale quantum devices. Phys. Rev. Appl. 15, 034026 (2021).

    Article  ADS  Google Scholar 

  32. Flammia, S. T. & Wallman, J. J. Efficient estimation of Pauli channels. ACM Trans. Quantum Comput. 1, 3 (2020).

  33. Erhard, A. et al. Characterizing large-scale quantum computers via cycle benchmarking. Nat. Commun. 10, 5347 (2019).

  34. Kimmel, S., da Silva, M. P., Ryan, C. A., Johnson, B. R. & Ohki, T. Robust extraction of tomographic information via randomized benchmarking. Phys. Rev. X 4, 011050 (2014).

    Google Scholar 

  35. Helsen, J., Xue, X., Vandersypen, L. M. K. & Wehner, S. A new class of efficient randomized benchmarking protocols. Npj Quantum Inf. 5, 71 (2019).

  36. Harper, R., Flammia, S. T. & Wallman, J. J. Efficient learning of quantum noise. Nat. Phys. 16, 1184–1188 (2020).

    Article  Google Scholar 

  37. van den Berg, E., Minev, Z. K. & Temme, K. Model-free readout-error mitigation for quantum expectation values. Phys. Rev. A 105, 032620 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  38. Wack, A. et al. Quality, speed, and scale: three key attributes to measure the performance of near-term quantum computers. Preprint at https://arxiv.org/abs/2110.14108 (2021).

Download references

Acknowledgements

We thank S. Bravyi, D. T. McClure and J. M. Gambetta for helpful discussions. Research in characterization and noise learning was sponsored in part by the Army Research Office and was accomplished under Grant Number W911NF-21-1-0002. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the US Government. The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Contributions

K.T. and E.B. developed the theory. E.B., Z.M. and A.K. ran the experiments. All authors designed the experiments, analysed the data and wrote the paper.

Corresponding author

Correspondence to Kristan Temme.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Ming Gong and Suguru Endo for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van den Berg, E., Minev, Z.K., Kandala, A. et al. Probabilistic error cancellation with sparse Pauli–Lindblad models on noisy quantum processors. Nat. Phys. 19, 1116–1121 (2023). https://doi.org/10.1038/s41567-023-02042-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02042-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing