Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scalable error mitigation for noisy quantum circuits produces competitive expectation values

Abstract

Noise in existing quantum processors only enables an approximation to ideal quantum computation. However, for the computation of expectation values, these approximations can be improved by error mitigation. This has been experimentally demonstrated in small systems but the scaling of these methods to larger circuit volumes remains unknown. Here we demonstrate the utility of zero-noise extrapolation for practically relevant quantum circuits using up to 26 qubits, circuit depths of 120 and 1,080 CNOT gates. We study the scaling of the method for canonical examples of product states and entangling Clifford circuits of increasing size, and extend it to simulating the quench dynamics of two-dimensional Ising spin lattices with varying couplings. These experiments reveal that the accuracy of physically relevant observables after error mitigation substantially exceeds previously expected values. Furthermore, we show that the efficacy of error mitigation is greatly enhanced by additional error suppression techniques and native gate decomposition that reduce the circuit time. By combining these methods, the accuracy of our quantum simulation surpasses the classical approximations obtained from an established tensor network method. These results establish the potential of a useful quantum advantage using noisy, digital quantum processors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Zero-noise extrapolation for short-depth quantum circuits.
Fig. 2: Scaling of zero-noise extrapolation for product states and entangling Clifford circuits.
Fig. 3: Quench dynamics of 2D Ising spin lattices: error-mitigated quantum simulation compared with PEPS.

Similar content being viewed by others

Data availability

Source data are available for this paper. All other data that support the plots within this Article and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995).

    Article  ADS  Google Scholar 

  2. Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Zhang, E. J. et al. High-performance superconducting quantum processors via laser annealing of transmon qubits. Sci. Adv. 8, eabi6690 (2022).

  4. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  ADS  Google Scholar 

  5. Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).

  6. Bravyi, S., Gosset, D., Koenig, R. & Tomamichel, M. Quantum advantage with noisy shallow circuits. Nat. Phys. 16, 1040–1045 (2020).

    Article  Google Scholar 

  7. Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  8. Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017).

    Google Scholar 

  9. Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491–495 (2019).

    Article  ADS  Google Scholar 

  10. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

  11. Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    Article  ADS  Google Scholar 

  12. Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).

    Article  ADS  Google Scholar 

  13. Schuld, M. & Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019).

    Article  ADS  Google Scholar 

  14. Dumitrescu, E. F. et al. Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett. 120, 210501 (2018).

    Article  ADS  Google Scholar 

  15. Song, C. et al. Quantum computation with universal error mitigation on a superconducting quantum processor. Sci. Adv. 5, eaaw5686 (2019).

    Article  ADS  Google Scholar 

  16. Zhang, S. et al. Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system. Nat. Commun. 11, 587 (2020).

    Article  ADS  Google Scholar 

  17. Koczor, B. Exponential error suppression for near-term quantum devices. Phys. Rev. X 11, 031057 (2021).

  18. Huggins, W. J. et al. Virtual distillation for quantum error mitigation. Phys. Rev. X 11, 041036 (2021).

  19. McClean, J. R., Kimchi-Schwartz, M. E., Carter, J. & de Jong, W. A. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states. Phys. Rev. A 95, 042308 (2017).

  20. Bonet-Monroig, X., Sagastizabal, R., Singh, M. & O’Brien, T. E. Low-cost error mitigation by symmetry verification. Phys. Rev. A 98, 062339 (2018).

  21. McArdle, S., Yuan, X. & Benjamin, S. Error-mitigated digital quantum simulation. Phys. Rev. Lett. 122, 180501 (2019).

  22. He, A., Nachman, B., de Jong, W. A. & Bauer, C. W. Zero-noise extrapolation for quantum-gate error mitigation with identity insertions. Phys. Rev. A 102, 012426 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  23. Lowe, A. et al. Unified approach to data-driven quantum error mitigation. Phys. Rev. Res. 3, 033098 (2021).

  24. Czarnik, P., Arrasmith, A., Coles, P. J. & Cincio, L. Error mitigation with Clifford quantum-circuit data. Quantum 5, 592 (2021).

  25. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article  ADS  Google Scholar 

  26. Chow, J. M. et al. Simple all-microwave entangling gate for fixed-frequency superconducting qubits. Phys. Rev. Lett. 107, 080502 (2011).

    Article  ADS  Google Scholar 

  27. Gordon, R. T. et al. Environmental radiation impact on lifetimes and quasiparticle tunneling rates of fixed-frequency transmon qubits. Appl. Phys. Lett. 120, 074002 (2022).

  28. Wei, K. X. et al. Hamiltonian engineering with multicolor rives for fast entangling gates and quantum crosstalk cancellation. Phys. Rev. Lett. 129, 060501 (2022).

  29. Jurcevic, P. et al. Demonstration of quantum volume 64 on a superconducting quantum computing system. Quantum Sci. Technol. 6, 025020 (2021).

    Article  ADS  Google Scholar 

  30. Murg, V., Verstraete, F. & Cirac, J. I. Variational study of hard-core bosons in a two-dimensional optical lattice using projected entangled pair states. Phys. Rev. A 75, 033605 (2007).

    Article  ADS  Google Scholar 

  31. Chamberland, C., Zhu, G., Yoder, T. J., Hertzberg, J. B. & Cross, A. W. Topological and subsystem codes on low-degree graphs with flag qubits. Phys. Rev. X 10, 011022 (2020).

    Google Scholar 

  32. Hertzberg, J. B. et al. Laser-annealing Josephson junctions for yielding scaled-up superconducting quantum processors. npj Quantum Inf. 7, 129 (2021).

  33. Carroll, M., Rosenblatt, S., Jurcevic, P., Lauer, I. & Kandala, A. Dynamics of superconducting qubit relaxation times. npj Quantum Inf. 8, 132 (2022).

  34. Sachdev, S. Quantum phase transitions. Phys. World 12, 33 (1999).

    Article  Google Scholar 

  35. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article  Google Scholar 

  36. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article  ADS  Google Scholar 

  37. Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601–604 (2017).

    Article  ADS  Google Scholar 

  38. Smith, A., Kim, M. S., Pollmann, F. & Knolle, J. Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Inf. 5, 106 (2019).

  39. Sopena, A., Gordon, M. H., Sierra, G. & López, E. Simulating quench dynamics on a digital quantum computer with data-driven error mitigation. Quantum Sci. Technol. 6, 045003 (2021).

  40. Vovrosh, J. et al. Simple mitigation of global depolarizing errors in quantum simulations. Phys. Rev. E 104, 035309 (2021).

  41. Urbanek, M. et al. Mitigating depolarizing noise on quantum computers with noise-estimation circuits. Phys. Rev. Lett. 127, 270502 (2021).

  42. Childs, A. M., Maslov, D., Nam, Y., Ross, N. J. & Su, Y. Toward the first quantum simulation with quantum speedup. Proc. Natl Acad. Sci. USA 115, 9456–9461 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, 2010).

  44. Moyal, J. E. Quantum mechanics as a statistical theory. Math. Proc. Camb. Philos. Soc. 45, 99–124 (1949).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Keldysh, L. V. et al. Diagram technique for nonequilibrium processes. Sov. Phys. JETP 20, 1018–1026 (1965).

    MathSciNet  Google Scholar 

  46. White, S. R. & Feiguin, A. E. Real-time evolution using the density matrix renormalization group. Phys. Rev. Lett. 93, 076401 (2004).

    Article  ADS  Google Scholar 

  47. Orús, R. A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003).

    Article  ADS  Google Scholar 

  49. Verstraete, F. & Cirac, J. I. Renormalization algorithms for quantum-many body systems in two and higher dimensions. Preprint at https://arxiv.org/abs/cond-mat/0407066 (2004).

  50. Verstraete, F., Murg, V. & Cirac, J. I. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143–224 (2008).

    Article  ADS  Google Scholar 

  51. Schuch, N., Wolf, M. M., Vollbrecht, K. G. H. & Cirac, J. I. On entropy growth and the hardness of simulating time evolution. New J. Phys. 10, 033032 (2008).

    Article  ADS  Google Scholar 

  52. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    Article  ADS  Google Scholar 

  53. Knill, E. Fault-tolerant postselected quantum computation: threshold analysis. Preprint at https://arxiv.org/abs/quant-ph/0404104 (2004).

  54. Wallman, J. J. & Emerson, J. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A 94, 052325 (2016).

    Article  ADS  Google Scholar 

  55. Hashim, A. et al. Randomized compiling for scalable quantum computing on a noisy superconducting quantum processor. Phys. Rev. X 11, 041039 (2021).

  56. Earnest, N., Tornow, C. & Egger, D. J. Pulse-efficient circuit transpilation for quantum applications on cross-resonance-based hardware. Phys. Rev. Res. 3, 043088 (2021).

  57. Stenger, J. P. T., Bronn, N. T., Egger, D. J. & Pekker, D. Simulating the dynamics of braiding of Majorana zero modes using an IBM quantum computer. Phys. Rev. Res. 3, 033171 (2021).

    Article  Google Scholar 

  58. Sundaresan, N. et al. Reducing unitary and spectator errors in cross resonance with optimized rotary echoes. PRX Quantum 1, 020318 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

We thank I. Lauer for contributions towards two-qubit gate calibration, and D. T. McClure and N. Sundaresan for valuable discussions on the device bring-up.

Author information

Authors and Affiliations

Authors

Contributions

A.K. and K.T. designed the experiments. Y.K. and A.K. performed the experiments. C.J.W. and T.J.Y. ran the noisy simulations. S.T.M. provided the code for implementing Pauli twirling. K.T. ran the tensor network simulations. Y.K., C.J.W., T.J.Y., J.M.G., K.T. and A.K. analysed the data and wrote the paper.

Corresponding authors

Correspondence to Youngseok Kim or Abhinav Kandala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Xiao Yuan, Jinzhao Sun, Yukun Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–VI, Figs. 1–10 and Table 1.

Source data

Source Data Fig. 2

Source data for Fig. 2 in .csv format along with a .ipynb file used to draw each plot.

Source Data Fig. 3

Source data for Fig. 3 in .csv format along with a .ipynb file used to draw each plot.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Wood, C.J., Yoder, T.J. et al. Scalable error mitigation for noisy quantum circuits produces competitive expectation values. Nat. Phys. 19, 752–759 (2023). https://doi.org/10.1038/s41567-022-01914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01914-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing