Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-thermal electron acceleration from magnetically driven reconnection in a laboratory plasma

Abstract

Magnetic reconnection rapidly converts magnetic energy into some combination of plasma flow energy, thermal energy and non-thermal energetic particles. Various reconnection acceleration mechanisms have been theoretically proposed and numerically studied in different collisionless and low-β environments, where β refers to the plasma-to-magnetic pressure ratio. These mechanisms include Fermi acceleration, betatron acceleration, parallel electric field acceleration along magnetic fields and direct acceleration by the reconnection electric field. However, none of them have been experimentally confirmed, as the direct observation of non-thermal particle acceleration in laboratory experiments has been difficult due to short Debye lengths for in situ measurements and short mean free paths for ex situ measurements. Here we report the direct measurement of accelerated non-thermal electrons from magnetically driven reconnection at low β in experiments using a laser-powered capacitor coil platform. We use kilojoule lasers to drive parallel currents to reconnect megagauss-level magnetic fields in a quasi-axisymmetric geometry. The angular dependence of the measured electron energy spectrum and the resulting accelerated energies, supported by particle-in-cell simulations, indicate that the mechanism of direct electric field acceleration by the out-of-plane reconnection electric field is at work. Scaled energies using this mechanism show direct relevance to astrophysical observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup of magnetically driven reconnection at low β.
Fig. 2: Experimental evidence of non-thermal electron acceleration.
Fig. 3: PIC simulation setup and results.
Fig. 4: Simulations validate electron acceleration mechanism.
Fig. 5: Centre feature in proton radiographs reproduced synthetically.

Similar content being viewed by others

Data availability

Data are available from the corresponding authors upon reasonable request.

Code availability

Information about the VPIC code is available via GitHub at https://github.com/lanl/vpic. Data analysis code is available from the corresponding authors upon reasonable request.

References

  1. Yamada, M., Kulsrud, R. & Ji, H. Magnetic reconnection. Rev. Mod. Phys. 82, 603–664 (2010).

    Article  ADS  MATH  Google Scholar 

  2. Ji, H. et al. Magnetic reconnection in the era of exascale computing and multiscale experiments. Nat. Rev. Phys. 4, 263–282 (2022).

    Article  Google Scholar 

  3. Øieroset, M., Lin, R. P., Phan, T. D., Larson, D. E. & Bale, S. D. Evidence for electron acceleration up to ~300 keV in the magnetic reconnection diffusion region of Earth’s magnetotail. Phys. Rev. Lett. 89, 195001 (2002).

    Article  ADS  Google Scholar 

  4. Masuda, S., Kosugi, T., Hara, H., Tsuneta, S. & Ogawara, Y. A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495–497 (1994).

    Article  ADS  Google Scholar 

  5. Krucker, S. et al. Measurements of the coronal acceleration region of a solar flare. Astrophys. J. 714, 1108–1119 (2010).

    Article  ADS  Google Scholar 

  6. Chen, B. et al. Measurement of magnetic field and relativistic electrons along a solar flare current sheet. Nat. Astron. 4, 1140–1147 (2020).

    Article  ADS  Google Scholar 

  7. Tavani, M. et al. Discovery of powerful gamma-ray flares from the Crab nebula. Science 331, 736–739 (2011).

    Article  ADS  Google Scholar 

  8. Abdo, A. et al. Gamma-ray flares from the Crab nebula. Science 331, 739–742 (2011).

    Article  ADS  Google Scholar 

  9. Kroon, J. J., Becker, P. A., Finke, J. D. & Dermer, C. D. Electron acceleration in pulsar-wind termination shocks: an application to the Crab nebula gamma-ray flares. Astrophys. J. 833, 157 (2016).

    Article  ADS  Google Scholar 

  10. Blandford, R., Yuan, Y., Hoshino, M. & Sironi, L. Magnetoluminescence. Space Sci. Rev. 207, 291–317 (2017).

    Article  ADS  Google Scholar 

  11. Guo, F. et al. Recent progress on particle acceleration and reconnection physics during magnetic reconnection in the magnetically-dominated relativistic regime. Phys. Plasmas 27, 080501 (2020).

    Article  ADS  Google Scholar 

  12. Drenkhahn, G. & Spruit, H. C. Efficient acceleration and radiation in Poynting flux powered GRB outflows. Astron. Astrophys. 391, 1141–1153 (2002).

    Article  ADS  Google Scholar 

  13. Sironi, L. & Spitkovsky, A. Relativistic reconnection: an efficient source of non-thermal particles. Astrophys. J. Lett. 783, L21 (2014).

    Article  ADS  Google Scholar 

  14. Dahlin, J. T., Drake, J. F. & Swisdak, M. The mechanisms of electron heating and acceleration during magnetic reconnection. Phys. Plasmas 21, 092304 (2014).

    Article  ADS  Google Scholar 

  15. Werner, G. R., Uzdensky, D. A., Cerutti, B., Nalewajko, K. & Begelman, M. C. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasmas. Astrophys. J. Lett. 816, L8 (2016).

    Article  ADS  Google Scholar 

  16. Dahlin, J. T., Drake, J. F. & Swisdak, M. Parallel electric fields are inefficient drivers of energetic electrons in magnetic reconnection. Phys. Plasmas 23, 120704 (2016).

    Article  ADS  Google Scholar 

  17. Totorica, S. R., Abel, T. & Fiuza, F. Nonthermal electron energization from magnetic reconnection in laser-driven plasmas. Phys. Rev. Lett. 116, 095003 (2016).

    Article  ADS  Google Scholar 

  18. Li, X., Guo, F., Li, H. & Li, G. Particle acceleration during magnetic reconnection in a low-beta plasma. Astrophys. J. 843, 21 (2017).

    Article  ADS  Google Scholar 

  19. Dahlin, J. T. Prospectus on electron acceleration via magnetic reconnection. Phys. Plasmas 27, 100601 (2020).

    Article  ADS  Google Scholar 

  20. Zenitani, S. & Hoshino, M. The generation of nonthermal particles in the relativistic magnetic reconnection of pair plasmas. Astrophys. J. Lett. 562, L63–L66 (2001).

    Article  ADS  Google Scholar 

  21. Egedal, J., Le, A. & Daughton, W. A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection. Phys. Plasmas 20, 061201 (2013).

    Article  ADS  Google Scholar 

  22. Drake, J. F., Swisdak, M., Che, H. & Shay, M. A. Electron acceleration from contracting magnetic islands during reconnection. Nature 443, 553–556 (2006).

    Article  ADS  Google Scholar 

  23. Hoshino, M., Mukai, T., Terasawa, T. & Shinohara, I. Suprathermal electron acceleration in magnetic reconnection. J. Geophys. Res. 106, 25979–25998 (2001).

    Article  ADS  Google Scholar 

  24. Savrukhin, P. V. Generation of suprathermal electrons during magnetic reconnection at the sawtooth crash and disruption instability in the T-10 tokamak. Phys. Rev. Lett. 86, 3036–3039 (2001).

    Article  ADS  Google Scholar 

  25. Klimanov, I., Fasoli, A. & Goodman, T. P., the TCV team. Generation of suprathermal electrons during sawtooth crashes in a tokamak plasma. Plasma Phys. Control. Fusion 49, L1–L6 (2007).

    Article  ADS  Google Scholar 

  26. DuBois, A. M. et al. Anisotropic electron tail generation during tearing mode magnetic reconnection. Phys. Rev. Lett. 118, 075001 (2017).

    Article  ADS  Google Scholar 

  27. Nilson, P. M. et al. Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions. Phys. Rev. Lett. 97, 255001 (2006).

    Article  ADS  Google Scholar 

  28. Willingale, L. et al. Proton deflectometry of a magnetic reconnection geometry. Phys. Plasmas 17, 043104 (2010).

    Article  ADS  Google Scholar 

  29. Zhong, J. et al. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers. Nat. Phys. 6, 984–987 (2010).

    Article  Google Scholar 

  30. Fiksel, G. et al. Magnetic reconnection between colliding magnetized laser-produced plasma plumes. Phys. Rev. Lett. 113, 105003 (2014).

    Article  ADS  Google Scholar 

  31. E Raymond, A. et al. Relativistic-electron-driven magnetic reconnection in the laboratory. Phys. Rev. E 98, 043207 (2018).

    Article  ADS  Google Scholar 

  32. Gao, L. et al. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current. Phys. Plasmas 23, 043106 (2016).

    Article  ADS  Google Scholar 

  33. Chien, A. et al. Study of a magnetically driven reconnection platform using ultrafast proton radiography. Phys. Plasmas 26, 062113 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  34. Chien, A. et al. Pulse width dependence of magnetic field generation using laser-powered capacitor coils. Phys. Plasmas 28, 052105 (2021).

    Article  ADS  Google Scholar 

  35. Dong, Q.-L. et al. Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction. Phys. Rev. Lett. 108, 215001 (2012).

    Article  ADS  Google Scholar 

  36. Zhong, J. Y. et al. Relativistic electrons produced by reconnecting electric field in a laser-driven bench-top solar flare. Astrophys. J. Suppl. Ser. 225, 30 (2016).

    Article  ADS  Google Scholar 

  37. Wilks, S. C. et al. Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542–549 (2001).

    Article  ADS  Google Scholar 

  38. Yamada, M. et al. Study of driven magnetic reconnection in a laboratory plasma. Phys. Plasmas 4, 1936–1944 (1997).

    Article  ADS  Google Scholar 

  39. Zhang, S. et al. Ion and electron acoustic bursts during anti-parallel reconnection driven by lasers. Preprint at https://arxiv.org/abs/2209.12754 (2022).

  40. Phan, T. D. et al. Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath. Nature 557, 202–206 (2018).

    Article  ADS  Google Scholar 

  41. Drake, R. P. et al. Efficient Raman sidescatter and hot-electron production in laser-plasma interaction experiments. Phys. Rev. Lett. 53, 1739–1742 (1984).

    Article  ADS  Google Scholar 

  42. Figueroa, H., Joshi, C., Azechi, H., Ebrahim, N. A. & Estabrook, K. Stimulated Raman scattering, two-plasmon decay, and hot electron generation from underdense plasmas at 0.35 μm. Phys. Fluids 27, 1887–1896 (1984).

    Article  ADS  Google Scholar 

  43. Ebrahim, N. A., Baldis, H. A., Joshi, C. & Benesch, R. Hot electron generation by the two-plasmon decay instability in the laser-plasma interaction at 10.6 μm. Phys. Rev. Lett. 45, 1179–1182 (1980).

    Article  ADS  Google Scholar 

  44. Uzdensky, D. Magnetic reconnection in extreme astrophysical environments. Space Sci. Rev. 160, 45–71 (2011).

    Article  ADS  Google Scholar 

  45. Cerutti, B., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. Simulations of particle acceleration beyond the classical synchrotron burnoff limit in magnetic reconnection: an explanation of the Crab flares. Astrophys. J. 770, 147 (2013).

    Article  ADS  Google Scholar 

  46. Bowers, K. J., Albright, B. J., Yin, L., Bergen, B. & Kwan, T. J. T. Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Phys. Plasmas 15, 055703 (2008).

    Article  ADS  Google Scholar 

  47. Uzdensky, D. & Kulsrud, R. Physical origin of the quadruole out-of-plane magnetic field in Hall-magnetohydrodynamic reconnection. Phys. Plasmas 13, 062305 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  48. Birn, J. et al. Geomagnetic Environmental Modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715–3719 (2001).

    Article  ADS  Google Scholar 

  49. Cassak, P., Liu, Y.-H. & Shay, M. A review of the 0.1 reconnection rate. J. Plasma Phys. 83, 715830501 (2017).

    Article  Google Scholar 

  50. Sharma Pyakurel, P. et al. Transition from ion-coupled to electron-only reconnection: basic physics and implications for plasma turbulence. Phys. Plasmas 26, 082307 (2019).

    Article  ADS  Google Scholar 

  51. Ji, H. & Daughton, W. Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas. Phys. Plasmas 18, 111207 (2011).

    Article  ADS  Google Scholar 

  52. Hillas, A. M. The origin of ultra-high-energy cosmic rays. Annu. Rev. Astron. Astrophys. 22, 425–444 (1984).

    Article  ADS  Google Scholar 

  53. Guo, F., Liu, Y.-H., Daughton, W. & Li, H. Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime. Astrophys. J. 806, 167 (2015).

    Article  ADS  Google Scholar 

  54. Vilmer, N. Solar flares and energetic particles. Philos. Trans. R. Soc. A 370, 3241–3268 (2012).

    Article  ADS  Google Scholar 

  55. Raymond, J. C., Krucker, S., Lin, R. P. & Petrosian, V. Observational aspects of particle acceleration in large solar flares. Space Sci. Rev. 173, 197–221 (2012).

    Article  ADS  Google Scholar 

  56. Goodman, J. & Uzdensky, D. Reconnection in marginally collisionless accretion disk coronae. Astrophys. J. 688, 555–558 (2008).

    Article  ADS  Google Scholar 

  57. Cangemi, F. et al. INTEGRAL discovery of a high-energy tail in the microquasar Cygnus X-3. Astron. Astrophys. 645, A60 (2021).

    Article  Google Scholar 

  58. Sari, R. & Piran, T. Predictions for the very early afterglow and the optical flash. Astrophys. J. 520, 641–649 (1999).

    Article  ADS  Google Scholar 

  59. Beloborodov, A. M. A flaring magnetar in FRB 121102? Astrophys. J. 843, L26 (2017).

    Article  ADS  Google Scholar 

  60. Torricelli-Ciamponi, G., Pietrini, P. & Orr, A. Non-thermal emission from AGN coronae. Astron. Astrophys. 438, 55–69 (2005).

    Article  ADS  Google Scholar 

  61. Massaro, F. & Ajello, M. Fueling lobes of radio galaxies: statistical particle acceleration and the extragalactic γ-ray background. Astrophys. J. Lett. 729, L12 (2011).

    Article  ADS  Google Scholar 

  62. Kataoka, J., Edwards, P., Georganopoulos, M., Takahara, F. & Wagner, S. Chandra detection of hotspot and knots of 3C 303. Astron. Astrophys. 399, 91–97 (2003).

    Article  ADS  Google Scholar 

  63. Habara, H. et al. A ten-inch manipulator (TIM) based fast-electron spectrometer with multiple viewing angles (OU-ESM). Rev. Sci. Instrum. 90, 063501 (2019).

    Article  ADS  Google Scholar 

  64. Bonnet, T. et al. Response functions of imaging plates to photons, electrons and 4He particles. Rev. Sci. Instrum. 84, 103510 (2013).

    Article  ADS  Google Scholar 

  65. Katz, J. et al. A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA. Rev. Sci. Instrum. 83, 10E349 (2012).

    Article  Google Scholar 

  66. Li, X., Guo, F., Li, H. & Birn, J. The roles of fluid compression and shear in electron energization during magnetic reconnection. Astrophys. J. 855, 80 (2018).

    Article  ADS  Google Scholar 

  67. Daughton, W., Scudder, J. & Karimabadi, H. Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Phys. Plasmas 13, 072101 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy (DOE) Office of Science, Fusion Energy Sciences (FES), under the LaserNetUS initiative at the Jupiter Laser Facility and OMEGA Laser Facility. This work was mainly supported by the High Energy Density Laboratory Plasma Science program by Office of Science and NNSA under grant no. DE-SC0020103 (H.J., A.C., L.G., S.Z. and E.G.B.), and also by DOE grants GR523126 and NSF grant PHY-2020249 (E.G.B.). We express our gratitude to General Atomics, the University of Michigan and the Laboratory for Laser Energetics for target fabrication, and to the Jupiter Laser Facility, OMEGA and OMEGA EP crews for experimental and technical support. H.J. thanks M. Yamada, J.-Y. Zhong, S. Prager, C. Ren, K. Huang and Q.-M. Lu for their contributions during initial development of this project.

Author information

Authors and Affiliations

Authors

Contributions

H.J., L.G. and E.G.B. initiated the research. A.C., L.G., S.Z., H.J. and E.G.B. designed the experiments. A.C., L.G., S.Z., H.J., R.F., H.C., G.F., G.B., R.C.C., S.N.C., A.F., K.F., O.F., D.H.F., J.F., S.F., K.H., A.R. and R.T performed the experiments, with target support by S.K. and C.K. A.C. performed the PIC simulations, with major support from W.D., A.S., A.L. and F.G. A.C. performed the ray-tracing calculations. A.C., L.G., S.Z., H.J. and E.G.B. contributed to the experimental data analysis, as well as interpretation and physics discussions of the simulation results. H.J. and E.G.B. contributed to the astrophysical implications. A.C., L.G., S.Z., H.J. and E.G.B. wrote and revised the main paper. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Abraham Chien or Hantao Ji.

Ethics declarations

Competing interests

The authors declare no completing interests.

Peer review

Peer review information

Nature Physics thanks Anabella Araudo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Positron raytracing with vacuum coil magnetic fields without reconnection.

a, The number of positrons near the laser spot are plotted as a function of OU-ESM channel, coil configuration, and coil current. In all coil configurations, positrons are deflected near the laser spot only for small finite coil currents 0 < I 3kA, as larger coil currents deflect the positrons below the bottom of the back plate. Further, across all channels, left and right coil configurations consistently exhibit larger positron impacts than the double coil configuration. This exercise implies that LPI-generated electrons are unlikely to be preferentially accelerated to the OU-ESM by double coil magnetic fields, as compared to single coil magnetic fields. b, A simulated five-channel energy spectrum is generated by transforming the experimental no-coil spectrum via positron raytracing at energies of 20 − 100keV, in 10keV increments. The applied magnetic field is the two-coil configuration, with a constant coil current of I = 1kA. Across all channels, simulated spectral dips are observed at 30 − 50keV, in contrast with the experimental spectral bumps (Fig. 2a,b,c) at 40 − 70keV. c, Application of the same raytracing technique to the left-coil configuration can demonstrate the selection mechanism at low energies in Channels 4 and 5, as described in the Fig. 2e caption. In the raytracing spectrum, dips are observed at low energy in Channels 4 and 5, as the lower-energy positrons are preferentially deflected to large θ − z angle by the coil magnetic field.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chien, A., Gao, L., Zhang, S. et al. Non-thermal electron acceleration from magnetically driven reconnection in a laboratory plasma. Nat. Phys. 19, 254–262 (2023). https://doi.org/10.1038/s41567-022-01839-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01839-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing