Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chiral cavity quantum electrodynamics

Abstract

Cavity quantum electrodynamics, which explores the granularity of light by coupling a resonator to a nonlinear emitter1, has played a foundational role in the development of modern quantum information science and technology. In parallel, the field of condensed matter physics has been revolutionized by the discovery of underlying topological2,3,4, often arising from the breaking of time-reversal symmetry, as in the case of the quantum Hall effect. In this work, we explore the cavity quantum electrodynamics of a transmon qubit in a topologically nontrivial Harper–Hofstadter lattice5. We assemble the lattice of niobium superconducting resonators6 and break time-reversal symmetry by introducing ferrimagnets7 before coupling the system to a transmon qubit. We spectroscopically resolve the individual bulk and edge modes of the lattice, detect Rabi oscillations between the excited transmon and each mode and measure the synthetic-vacuum-induced Lamb shift of the transmon. Finally, we demonstrate the ability to employ the transmon to count individual photons8 within each mode of the topological band structure. This work opens the field of experimental chiral quantum optics9, enabling topological many-body physics with microwave photons 10,11 and providing a route to backscatter-resilient quantum communication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Elements of chiral cavity QED.
Fig. 2: A superconducting Chern circuit.
Fig. 3: Quantum nonlinear dynamics on a chiral lattice.

Similar content being viewed by others

Data availability

The experimental data presented in this manuscript are available from the corresponding author upon request, due to the proprietary file formats employed in the data collection process.

Code availability

The source code for simulations in Fig. 2 is available from the corresponding author upon request.

References

  1. Walther, H., Varcoe, B. T., Englert, B.-G. & Becker, T. Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325–1382 (2006).

    Article  ADS  Google Scholar 

  2. Von Klitzing, K. The quantized Hall effect. Rev. Mod. Phys. 58, 519–531 (1986).

    Article  ADS  Google Scholar 

  3. Stormer, H. L., Tsui, D. C. & Gossard, A. C. The fractional quantum Hall effect. Rev. Mod. Phys. 71, S298–S305 (1999).

    Article  MathSciNet  Google Scholar 

  4. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  5. Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).

    Article  ADS  Google Scholar 

  6. Reagor, M. et al. Rea ching 10 ms single photon lifetimes for superconducting aluminum cavities. Appl. Phys. Lett. 102, 192604 (2013).

    Article  ADS  Google Scholar 

  7. Owens, C. et al. Quarter-flux Hofstadter lattice in a qubit-compatible microwave cavity array. Phys. Rev. A 97, 013818 (2018).

    Article  ADS  Google Scholar 

  8. Schuster, D. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007).

    Article  ADS  Google Scholar 

  9. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    Article  ADS  Google Scholar 

  10. Anderson, B. M., Ma, R., Owens, C., Schuster, D. I. & Simon, J. Engineering topological many-body materials in microwave cavity arrays. Phys. Rev. X 6, 041043 (2016).

    Google Scholar 

  11. De Bernardis, D., Cian, Z.-P., Carusotto, I., Hafezi, M. & Rabl, P. Light–matter interactions in synthetic magnetic fields: Landau-photon polaritons. Phys. Rev. Lett. 126, 103603 (2021).

    Article  ADS  Google Scholar 

  12. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  ADS  Google Scholar 

  13. Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014).

    Article  ADS  Google Scholar 

  14. Baur, S., Tiarks, D., Rempe, G. & Dürr, S. Single-photon switch based on Rydberg blockade. Phys. Rev. Lett. 112, 073901 (2014).

    Article  ADS  Google Scholar 

  15. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  16. Abrikosov, A. A. The magnetic properties of superconducting alloys. J. Phys. Chem. Solids 2, 199–208 (1957).

    Article  ADS  Google Scholar 

  17. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  18. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & M., T. J. Imaging topological edge states in silicon photonics. Nat. Photonics 7, 1001–1005 (2013).

    Article  ADS  Google Scholar 

  19. Schine, N., Ryou, A., Gromov, A., Sommer, A. & Simon, J. Synthetic Landau levels for photons. Nature 534, 671–675 (2016).

    Article  ADS  Google Scholar 

  20. Schine, N., Chalupnik, M., Can, T., Gromov, A. & Simon, J. Electromagnetic and gravitational responses of photonic Landau levels. Nature 565, 173–179 (2019).

    Article  ADS  Google Scholar 

  21. Jia, N., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015).

    Google Scholar 

  22. Lu, Y. et al. Probing the Berry curvature and Fermi arcs of a Weyl circuit. Phys. Rev. B 99, 020302 (2019).

    Article  ADS  Google Scholar 

  23. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  Google Scholar 

  24. Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2016).

    Article  MathSciNet  Google Scholar 

  25. Carusotto, I. et al. Photonic materials in circuit quantum electrodynamics. Nat. Phys. 16, 268–279 (2020).

    Article  Google Scholar 

  26. Clark, L. W., Schine, N., Baum, C., Jia, N. & Simon, J. Observation of Laughlin states made of light. Nature 582, 41–45 (2020).

    Article  ADS  Google Scholar 

  27. Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–57 (2019).

    Article  ADS  Google Scholar 

  28. Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Barik, S., Karasahin, A., Mittal, S., Waks, E. & Hafezi, M. Chiral quantum optics using a topological resonator. Phys. Rev. B 101, 205303 (2020).

    Article  ADS  Google Scholar 

  30. Meiser, D. & Meystre, P. Superstrong coupling regime of cavity quantum electrodynamics. Phys. Rev. A 74, 065801 (2006).

    Article  ADS  Google Scholar 

  31. Kuzmin, R., Mehta, N., Grabon, N., Mencia, R. & Manucharyan, V. E. Superstrong coupling in circuit quantum electrodynamics. npj Quantum Inf. 5, 1–6 (2019).

    Article  Google Scholar 

  32. Fragner, A. et al. Resolving vacuum fluctuations in an electrical circuit by measuring the Lamb shift. Science 322, 1357–1360 (2008).

    Article  ADS  Google Scholar 

  33. Lamb Jr, W. E. & Retherford, R. C. Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241–243 (1947).

    Article  ADS  Google Scholar 

  34. Sundaresan, N. M. et al. Beyond strong coupling in a multimode cavity. Phys. Rev. X 5, 021035 (2015).

    Google Scholar 

  35. Pichler, H., Choi, S., Zoller, P. & Lukin, M. D. Universal photonic quantum computation via time-delayed feedback. Proc. Natl Acad. Sci. USA 114, 11362–11367 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Chakram, S. et al. Multimode photon blockade. Nat. Phys. (2022). https://doi.org/10.1038/s41567-022-01630-y

  37. Ma, R., Owens, C., Houck, A., Schuster, D. I. & Simon, J. Autonomous stabilizer for incompressible photon fluids and solids. Phys. Rev. A 95, 043811 (2017).

    Article  ADS  Google Scholar 

  38. Kapit, E., Hafezi, M. & Simon, S. H. Induced self-stabilization in fractional quantum Hall states of light. Phys. Rev. X 4, 031039 (2014).

    Google Scholar 

  39. Hafezi, M., Adhikari, P. & Taylor, J. M. Chemical potential for light by parametric coupling. Phys. Rev. B 92, 174305 (2015).

    Article  ADS  Google Scholar 

  40. Lebreuilly, J. et al. Stabilizing strongly correlated photon fluids with non-Markovian reservoirs. Phys. Rev. A 96, 033828 (2017).

    Article  ADS  Google Scholar 

  41. Wilczek, F. Fractional Statistics and Anyon Superconductivity (World Scientific, 1990).

  42. Chakram, S. et al. Seamless high-Q microwave cavities for multimode circuit quantum electrodynamics. Phys. Rev. Lett. 127, 107701 (2021).

    Article  ADS  Google Scholar 

  43. Pechal, M. et al. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Phys. Rev. X 4, 041010 (2014).

    Google Scholar 

Download references

Acknowledgements

This work was supported primarily by ARO MURI W911NF-15-1-0397 and AFOSR MURI FA9550-19-1-0399. This work was also supported by NSF EAGER 1926604, and the University of Chicago Materials Research Science and Engineering Center, which is funded by National Science Foundation under award no. DMR-1420709. J.C.O., M.G.P. and G.R. acknowledge support from the NSF GRFP. We acknowledge A. Oriani for providing a rapidly cycling refrigerator for cryogenic lattice calibration.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were designed by R.M., J.C.O., D.I.S. and J.S. The apparatus was built by J.C.O., R.M., G.R. and B.S. J.C.O. and M.G.P. collected the data, and all authors analysed the data and contributed to the manuscript.

Corresponding author

Correspondence to David I. Schuster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Peer review

Peer review information

Nature Physics thanks Sunil Mittal and Yutaka Tabuchi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–15, Tables 1 and 2 and discussion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owens, J.C., Panetta, M.G., Saxberg, B. et al. Chiral cavity quantum electrodynamics. Nat. Phys. 18, 1048–1052 (2022). https://doi.org/10.1038/s41567-022-01671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01671-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing