Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Manipulation of Dirac band curvature and momentum-dependent g factor in a kagome magnet


The Zeeman effect describes the energy change of an atomic quantum state in a magnetic field. The magnitude and direction of this change depend on the dimensionless Landé g factor. In quantum solids, the response of the Bloch electron states to the magnetic field also exhibits the Zeeman effect, with an effective g factor that was theoretically predicted to depend on the momentum1,2,3, and which may be particularly strong in topological and magnetic systems. However, the momentum dependence of the g factor is difficult to extract and it has not been directly measured. Here we report the experimental discovery of a momentum-dependent g factor in the kagome magnet YMn6Sn6. We map the evolution of a massive Dirac band in the vicinity of the Fermi level as a function of the magnetic field. We find that electronic states at different lattice momenta exhibit different Zeeman energy shifts, giving rise to an anomalous g factor that peaks around the Dirac point. Our work provides a momentum-resolved visualization of Dirac band curvature manipulated by a magnetic field, which will be relevant to other topological kagome magnets.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Crystal structure and different surface terminations.
Fig. 2: Magnetic field dependence of the spectral peak in the density of states.
Fig. 3: Spectroscopic imaging of the Mn plane.
Fig. 4: Determination of the k-dependent g factor.

Data availability

All data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The computer code used for data analysis is available upon request from the corresponding author.


  1. Roth, L. M. Semiclassical theory of magnetic energy levels and magnetic susceptibility of Bloch electrons. Phys. Rev. 145, 434–448 (1966).

    ADS  Google Scholar 

  2. Cohen, M. H. & Blount, E. I. The g-factor and de Haas–Van Alphen effect of electrons in bismuth. Philos. Mag. 5, 115–126 (1960).

    ADS  Google Scholar 

  3. de Graaf, A. M. & Overhauser, A. W. Theory of the g shift of conduction electrons. Phys. Rev. 180, 701–706 (1969).

    ADS  Google Scholar 

  4. Schober, C., Kurz, G., Wonn, H., Nemoshkalenko, V. V. & Antonov, V. N. The gryromagnetic factor of conduction electrons in silver, gold, palladium and platinum. Phys. Status Solidi 136, 233–239 (1986).

    Google Scholar 

  5. Koshino, M. Chiral orbital current and anomalous magnetic moment in gapped graphene. Phys. Rev. B 84, 125427 (2011).

    ADS  Google Scholar 

  6. Lee, J. Y. et al. Theory of correlated insulating behaviour and spin–triplet superconductivity in twisted double bilayer graphene. Nat. Commun. 10, 5333 (2019).

    ADS  Google Scholar 

  7. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS  Google Scholar 

  8. Yin, J.-X. et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019).

    Google Scholar 

  9. Sun, S., Song, Z., Weng, H. & Dai, X. Topological metals induced by the Zeeman effect. Phys. Rev. B 101, 125118 (2020).

    ADS  Google Scholar 

  10. Bode, M. et al. Magnetization-direction-dependent local electronic structure probed by scanning tunneling spectroscopy. Phys. Rev. Lett. 89, 237205 (2002).

    ADS  Google Scholar 

  11. Hanneken, C. et al. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. Nat. Nanotechnol. 10, 1039–1042 (2015).

    ADS  Google Scholar 

  12. Sessi, P., Guisinger, N. P., Guest, J. R. & Bode, M. Temperature and size dependence of antiferromagnetism in Mn nanostructures. Phys. Rev. Lett. 103, 167201 (2009).

    ADS  Google Scholar 

  13. Ghimire, M. P. et al. Creating Weyl nodes and controlling their energy by magnetization rotation. Phys. Rev. Res. 1, 032044 (2019).

    Google Scholar 

  14. Sachdev, S. Kagome- and triangular-lattice Heisenberg antiferromagnets: ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons. Phys. Rev. B 45, 12377–12396 (1992).

    ADS  Google Scholar 

  15. Mazin, I. I. et al. Theoretical prediction of a strongly correlated Dirac metal. Nat. Commun. 5, 4261 (2014).

    ADS  Google Scholar 

  16. Guo, H.-M. & Franz, M. Topological insulator on the kagome lattice. Phys. Rev. B 80, 113102 (2009).

    ADS  Google Scholar 

  17. Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).

    ADS  Google Scholar 

  18. Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).

    ADS  Google Scholar 

  19. Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    ADS  Google Scholar 

  20. Balents, L., Fisher, M. P. A. & Girvin, S. M. Fractionalization in an easy-axis kagome antiferromagnet. Phys. Rev. B 65, 224412 (2002).

    ADS  Google Scholar 

  21. Wu, C., Bergman, D., Balents, L. & Das Sarma, S. Flat bands and Wigner crystallization in the honeycomb optical lattice. Phys. Rev. Lett. 99, 070401 (2007).

    ADS  Google Scholar 

  22. Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018).

    ADS  Google Scholar 

  23. Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019).

    ADS  Google Scholar 

  24. Liu, D. F. et al. Magnetic Weyl semimetal phase in a Kagomé crystal. Science 365, 1282–1285 (2019).

    ADS  Google Scholar 

  25. Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    Google Scholar 

  26. Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    ADS  Google Scholar 

  27. Yin, J.-X. X. et al. Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet. Nature 562, 91–95 (2018).

    ADS  Google Scholar 

  28. Liu, Z. et al. Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn. Nat. Commun. 11, 4002 (2020).

    ADS  Google Scholar 

  29. Wang, Q. et al. Field-induced topological Hall effect and double-fan spin structure with a c-axis component in the metallic kagome antiferromagnetic compound YMn6Sn6. Phys. Rev. B 103, 014416 (2021).

    ADS  Google Scholar 

  30. Zhang, H. et al. Topological magnon bands in a room-temperature kagome magnet. Phys. Rev. B 101, 100405 (2020).

    ADS  Google Scholar 

  31. Ghimire, N. J. et al. Competing magnetic phases and fluctuation-driven scalar spin chirality in the kagome metal YMn6Sn6. Sci. Adv. 6, eabe2680 (2020).

    ADS  Google Scholar 

  32. Rosenfeld, E. V. & Mushnikov, N. V. Double-flat-spiral magnetic structures: theory and application to the compounds. Phys. B Condens. Matter 403, 1898–1906 (2008).

    ADS  Google Scholar 

  33. Li, M. et al. Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6. Nat. Commun. 12, 3129 (2021).

    ADS  Google Scholar 

  34. Yin, J.-X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020).

    ADS  Google Scholar 

  35. Liao, Z., Jiang, P., Zhong, Z. & Li, R.-W. Materials with strong spin-textured bands. npj Quantum Mater. 5, 30 (2020).

    ADS  Google Scholar 

  36. Kozlova, N. et al. Magnetic-field-induced band-structure change in CeBiPt. Phys. Rev. Lett. 95, 086403 (2005).

    ADS  Google Scholar 

  37. He, L. P. et al. Quantum transport evidence for the three-dimensional dirac semimetal phase in Cd3As2. Phys. Rev. Lett. 113, 246402 (2014).

    ADS  Google Scholar 

  38. Fuseya, Y., Ogata, M. & Fukuyama, H. Transport properties and diamagnetism of Dirac electrons in bismuth. J. Phys. Soc. Jpn 84, 012001 (2015).

    ADS  Google Scholar 

  39. Nair, N. L. et al. Thermodynamic signature of Dirac electrons across a possible topological transition in ZrTe5. Phys. Rev. B 97, 041111 (2018).

    ADS  Google Scholar 

  40. Li, S.-Y. et al. Experimental evidence for orbital magnetic moments generated by moiré-scale current loops in twisted bilayer graphene. Phys. Rev. B 102, 121406 (2020).

    ADS  Google Scholar 

  41. Xing, Y. et al. Localized spin–orbit polaron in magnetic Weyl semimetal Co3Sn2S2. Nat. Commun. 11, 5613 (2020).

    ADS  Google Scholar 

  42. Zhang, S. S. et al. Many-body resonance in a correlated topological kagome antiferromagnet. Phys. Rev. Lett. 125, 046401 (2020).

    ADS  Google Scholar 

  43. Deng, J. et al. Epitaxial growth of ultraflat stanene with topological band inversion. Nat. Mater. 17, 1081–1086 (2018).

    ADS  Google Scholar 

Download references


I.Z. gratefully acknowledges support from Army Research Office grant no. W911NF-17-1-0399. H. Lei acknowledges support by the National Key R&D Program of China (grant no. 2018YFE0202600), the Beijing Natural Science Foundation (grant no. Z200005) and the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (grants nos. 18XNLG14 and 19XNLG17). K.L. acknowledges support from the National Key R&D Program of China (grant no. 2017YFA0302903), the National Natural Science Foundation of China (grant no. 12174443) and the Beijing Natural Science Foundation (grant no. Z200005). K.L. acknowledges the use of computational resources provided by the Physical Laboratory of High Performance Computing at Renmin University of China. Z.W. acknowledges support from the US Department of Energy, Basic Energy Sciences (grant no. DE-FG02-99ER45747) and the Cottrell SEED Award no. 27856 from the Research Corporation for Science Advancement.

Author information

Authors and Affiliations



H.Li and H.Z. performed STM experiments. H.Li analysed the STM data. Q.W. and Q.Y. synthesized and characterized the samples under the supervision of H.Lei, K.J. and Z.W. performed orbital magnetization calculations. N.-N.Z. and K.L. performed simulations of the STM topographs. H.Li, H.Z., Z.W. and I.Z. wrote the manuscript, with input from all authors. I.Z. supervised the project.

Corresponding authors

Correspondence to Ziqiang Wang, Hechang Lei or Ilija Zeljkovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Madhav Ghimire and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Other surface terminations observed in YMn6Sn6.

(a-d) STM topographs of other crystalline facets observed on surfaces with large slopes (approximate surface angle is shown in the upper left). The upper right corner in each panel shows the Fourier transform of the corresponding topograph, with the most prominent peaks circled in red. For comparison, all STM topographs of the ab-plane in the main text show nominal angle of approximately 2 degrees or less, a typical uncertainty of gluing the sample to the holder by silver epoxy. STM setup condition: (a, b) Iset = 10 pA, Vsample = 400 mV; (c) Iset = 70 pA, Vsample = 30 mV; (d) Iset = 10 pA, Vsample = 400 mV.

Extended Data Fig. 2 Surface identification based on step heights and theoretical simulations.

(a) STM topograph of consecutive steps. (b) Topographic line profile taken along the red line denoted in (a). The total height between the bottom layer and the top layer is 8.7 Å, which is a unit cell height. Based on the step heights and the nature of surface morphologies over each layer, surface terminations are identified as Mn, Sn1, Mn and Mn (the tallest to the shortest terrace). (c-e) Theoretical simulations of STM topographs of Mn, Sn1 and Sn2 terminations at 30 mV bias. (fh) Experimental STM topographs of Mn, Sn1 and Sn2 surface terminations. STM setup condition: (c-e) simulated Vsample = 30 mV. (f-h) Iset = 70 pA, Vsample = 30 mV.

Extended Data Fig. 3 Bias-dependent STM topographs.

STM topographs of (a-d) Mn and (e-h) Sn1 surface terminations as a function of bias. The lower right corner of (a,e) shows a Fourier transform of the topograph in that panel, with hexagonal Bragg peaks circled in red. STM topographs measured at different bias over the same region of the sample show qualitatively the same surface morphology, regardless of the bias. STM setup condition: (a) Iset = 100 pA, V sample = 1 V. (b) Iset = 100 pA, Vsample = 50 mV. (c) Iset = 100 pA, Vsample = −50 mV. (d) Iset = 100 pA, Vsample = −1 V. (e) Iset = 30 pA, Vsample = 1 V. (f) Iset = 30 pA, Vsample = 50 mV. (g) Iset = 30 pA, Vsample = −50 mV. (h) Iset = 30 pA, V sample = −1 V.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Discussions 1–6.

Source data

Source Data Fig. 1

Data from Fig. 1g,h,i.

Source Data Fig. 2

Data from Fig. 2a,c.

Source Data Fig. 4

Data from Fig. 4e,f,g,j.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhao, H., Jiang, K. et al. Manipulation of Dirac band curvature and momentum-dependent g factor in a kagome magnet. Nat. Phys. 18, 644–649 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing