Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

All-optical attoclock for imaging tunnelling wavepackets

Abstract

Recent measurements of time delays during tunnelling of cold atoms through an optically created potential barrier have fuelled an ongoing debate about possible time delays during light-induced tunnelling of an electron from an atom. Yet, such a delay—whether it is present or not—is only one quantity characterizing the tunnelling wavepacket, whilst the underlying dynamics are richer. Here we show how to complement photo-electron detection in laser-induced tunnelling by measuring the light emitted by the tunnelling electron—the so-called Brunel radiation. Using a combination of single- and two-colour driving fields, we identify the all-optical signatures of the reshaping of the tunnelling wavepacket as it emerges from the tunnelling barrier and moves away from the core. This reshaping includes not only an effective time delay but also the time-reversal asymmetry of the ionization process, which we describe theoretically and observe experimentally. We show how both delay and reshaping are mapped onto the polarization properties of the Brunel radiation, with different harmonics behaving as different hands of a clock moving at different speeds. The all-optical detection may also allow time-resolved measurements of optical tunnelling in condensed matter systems on the attosecond time scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photo-electron versus all-optical attoclock.
Fig. 2: Extracting photo-ionization information from higher-order Brunel harmonics for the hydrogen atom.
Fig. 3: Experimental reconstruction of sub-cycle ionization dynamics in He compared with theoretical simulations.

Similar content being viewed by others

Data availability

Source data are available for this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381 (2007).

    Article  Google Scholar 

  2. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424 (2006).

    Article  ADS  Google Scholar 

  3. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972 (2009).

    Article  ADS  Google Scholar 

  4. Bruner, B. D. et al. Multidimensional high harmonic spectroscopy. J. Phys. B 48, 174006 (2015).

    Article  ADS  Google Scholar 

  5. Torres, R. et al. Revealing molecular structure and dynamics through high-order harmonic generation driven by mid-IR fields. Phys. Rev. A 81, 051802 (2010).

    Article  ADS  Google Scholar 

  6. Pedatzur, O. et al. Attosecond tunnelling interferometry. Nat. Phys. 11, 815 (2015).

    Article  Google Scholar 

  7. Brunel, F. Harmonic generation due to plasma effects in a gas undergoing multiphoton ionization in the high-intensity limit. J. Opt. Soc. Am. B 7, 521 (1990).

    Article  ADS  Google Scholar 

  8. Babushkin, I. et al. Terahertz and higher-order Brunel harmonics: from tunnel to multiphoton ionization regime in tailored fields. J. Mod. Opt. 64, 1078 (2017).

    Article  ADS  Google Scholar 

  9. Balciunas, T. et al. Optical and THz signatures of sub-cycle tunneling dynamics. Chem. Phys. 414, 92 (2013).

    Article  Google Scholar 

  10. Lanin, A. A., Stepanov, E. A., Fedotov, A. B. & Zheltikov, A. M. Mapping the electron band structure by intraband high-harmonic generation in solids. Optica 4, 516 (2017).

    Article  ADS  Google Scholar 

  11. Silva, R. E. F., Jiménez-Galán, Á., Amorim, B., Smirnova, O. & Ivanov, M. Topological strong-field physics on sub-laser-cycle timescale. Nat. Photonics 13, 849 (2019).

    Article  ADS  Google Scholar 

  12. Jürgens, P. et al. Origin of strong-field-induced low-order harmonic generation in amorphous quartz. Nat. Phys. 16, 1035 (2020).

    Article  Google Scholar 

  13. Jürgens, P. et al. Characterization of laser-induced ionization dynamics in solid dielectrics. arXiv https://arxiv.org/abs/2108.03053 (2021).

  14. Kim, K. Y., Taylor, A. J., Glownia, J. H. & Rodriguez, G. Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nat. Photonics 2, 605 (2008).

    Article  Google Scholar 

  15. Babushkin, I. et al. Tailoring terahertz radiation by controlling tunnel photoionization events in gases. New J. Phys 13, 123029 (2011).

    Article  Google Scholar 

  16. Geissler, M. et al. Light propagation in field-ionizing media: extreme nonlinear optics. Phys. Rev. Lett. 83, 2930 (1999).

    Article  ADS  Google Scholar 

  17. Babushkin, I., Skupin, S. & Herrmann, J. Generation of terahertz radiation from ionizing two-color laser pulses in Ar filled metallic hollow waveguides. Opt. Express 18, 9658 (2010).

    Article  ADS  Google Scholar 

  18. Zhang, K. et al. Continuum electron giving birth to terahertz emission. Photonics Res. 8, 760 (2020).

    Article  Google Scholar 

  19. Eckle, P. et al. Attosecond angular streaking. Nat. Phys. 4, 565 (2008a).

    Article  Google Scholar 

  20. Eckle, P. et al. Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525 (2008b).

    Article  ADS  Google Scholar 

  21. Huismans, Y. et al. Time-resolved holography with photoelectrons. Science 331, 61 (2011).

    Article  ADS  Google Scholar 

  22. Shafir, D. et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343 (2012).

    Article  ADS  Google Scholar 

  23. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817 (2004).

    Article  ADS  Google Scholar 

  24. Pfeiffer, A. N. et al. Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms. Nat. Phys. 8, 76 (2011).

    Article  Google Scholar 

  25. Landsman, A. S. Ultrafast resolution of tunneling delay time. Optica 1, 343 (2014).

    Article  ADS  Google Scholar 

  26. Yakaboylu, E., Klaiber, M. & Hatsagortsyan, K. Z. Wigner time delay for tunneling ionization via the electron propagator. Phys. Rev. A 90, 012116 (2014).

    Article  ADS  Google Scholar 

  27. Torlina, L. et al. Interpreting attoclock measurements of tunnelling times. Nat. Phys. 11, 503 (2015).

    Article  Google Scholar 

  28. Ni, H., Saalmann, U. & Rost, J.-M. Tunneling ionization time resolved by backpropagation. Phys. Rev. Lett. 117, 023002 (2016).

    Article  ADS  Google Scholar 

  29. Camus, N. et al. Experimental evidence for quantum tunneling time. Phys. Rev. Lett. 119, 023201 (2017).

    Article  ADS  Google Scholar 

  30. Sainadh, U. S. et al. Attosecond angular streaking and tunnelling time in atomic hydrogen. Nature 568, 75 (2019).

    Article  ADS  Google Scholar 

  31. Eicke, N., Brennecke, S. & Lein, M. Attosecond-scale streaking methods for strong-field ionization by tailored fields. Phys. Rev. Let. 124, 043202 (2020).

    Article  ADS  Google Scholar 

  32. Ivanov, I. A. & Kheifets, A. S. Strong-field ionization of He by elliptically polarized light in attoclock configuration. Phys. Rev. A 89, 021402 (2014).

    Article  ADS  Google Scholar 

  33. Landsman, A. S. & Keller, U. Attosecond science and the tunnelling time problem. Phys. Rep. 547, 1 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  34. Teeny, N., Yakaboylu, E., Bauke, H. & Keitel, C. H. Ionization time and exit momentum in strong-field tunnel ionization. Phys. Rev. Lett. 116, 063003 (2016).

    Article  ADS  Google Scholar 

  35. Kaushal, J., Morales, F., Torlina, L., Ivanov, M. & Smirnova, O. Spin-orbit larmor clock for ionization times in one-photon and strong-field regimes. J. Phys. B 48, 234002 (2015).

    Article  ADS  Google Scholar 

  36. Eicke, N. & Lein, M. Attoclock with counter-rotating bicircular laser fields. Phys. Rev. A 99, 031402 (2019).

    Article  ADS  Google Scholar 

  37. Ramos, R., Spierings, D., Racicot, I. & Steinberg, A. Measurement of the time spent by a tunnelling atom within the barrier region. Nature 583, 529 (2020).

    Article  ADS  Google Scholar 

  38. Meng, C. et al. Enhancement of terahertz radiation by using circularly polarized two-color laser fields. Appl. Phys. Lett. 109, 131105 (2016).

    Article  ADS  Google Scholar 

  39. Tulsky, V. A., Baghery, M., Saalmann, U. & Popruzhenko, S. V. Boosting terahertz-radiation power with two-color circularly polarized midinfrared laser pulses. Phys. Rev. A 98, 053415 (2018).

    Article  ADS  Google Scholar 

  40. Tailliez, C. et al. Terahertz pulse generation by two-color laser fields with circular polarization. New J. Phys. 22, 103038 (2020).

    Article  ADS  Google Scholar 

  41. Yudin, G. L. & Ivanov, M. Y. Nonadiabatic tunnel ionization: looking inside a laser cycle. Phys. Rev. A 64, 013409 (2001a).

    Article  ADS  Google Scholar 

  42. Kim, K.-Y. Generation of coherent terahertz radiation in ultrafast laser–gas interactions. Phys. Plasmas 16, 056706 (2009).

    Article  ADS  Google Scholar 

  43. Torlina, L. & Smirnova, O. Time-dependent analytical R-matrix approach for strong-field dynamics. I. one-electron systems. Phys. Rev. A 86, 043408 (2012).

    Article  ADS  Google Scholar 

  44. Bruner, B. D. et al. Multidimensional high harmonic spectroscopy of polyatomic molecules: detecting sub-cycle laser-driven hole dynamics upon ionization in strong mid-IR laser fields. Faraday Discuss. 194, 369 (2016).

    Article  ADS  Google Scholar 

  45. Ivanov, M. Y., Spanner, M. & Smirnova, O. Anatomy of strong field ionization. J. Mod. Opt. 52, 165 (2005).

    Article  ADS  MATH  Google Scholar 

  46. Hofmann, M. et al. Noninstantaneous polarization dynamics in dielectric media. Optica 2, 151 (2015).

    Article  ADS  Google Scholar 

  47. Sommer, A. et al. Attosecond nonlinear polarization and light–matter energy transfer in solids. Nature 534, 86 (2016).

    Article  ADS  Google Scholar 

  48. Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 530, 66 (2016).

    Article  ADS  Google Scholar 

  49. Morales, F., Bredtmann, T. & Patchkovskii, S. iSURF: a family of infinite-time surface flux methods. J. Phys. B: At. Mol. Opt. Phys. 49, 245001 (2016).

    Article  ADS  Google Scholar 

  50. Yudin, G. L. & Ivanov, M. Y. Nonadiabatic tunnel ionization: looking inside a laser cycle. Phys. Rev. A 64, 013409 (2001b).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I.B., A.D. and U.M. thank the Deutsche Forschungsgemeinschaft (DFG) (projects BA 4156/4-2, MO 850-19/2) as well as the Cluster of Excellence PhoenixD (EXC 2122, project ID 390833453) for financial support. O.G.K., I.A.N., N.A.P. and D.E.S. thank the Russian Science Foundation (grant no. 21-49-00023) and National Natural Science Foundation of China (12061131010) for support. S.S. acknowledges support by the Qatar National Research Fund (grant NPRP 12S-0205-190047) and HPC resources from GENCI (grant no. A0080507594). Á.J.G. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101028938. M.I. acknowledges support by the DFG priority programme QUTIF under grant agreement IV 152/6-2 and funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 899794.

Author information

Authors and Affiliations

Authors

Contributions

I.B. suggested the idea, developed the quantum Drude-like model, performed simulations and analytics based on this model and performed TDSE simulations. Á.J.G. performed TDSE simulations for the two-colour case. S.S., O.G.K., I.A.N., N.A.P. and D.E.S. performed simulations of unidirectional propagation equations. J.R.C.d.A., M.K., D.Z. and L.S. performed the experiment. I.B., Á.J.G., A.H., F.M., L.B., S.S., U.M., A.D., T.N., M.J.J.V., V.V. and M.I. analysed and interpreted the results of the simulations and experiments. All authors participated in the article formulation and writing.

Corresponding author

Correspondence to Ihar Babushkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary

Supplementary discussion.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babushkin, I., Galán, Á.J., de Andrade, J.R.C. et al. All-optical attoclock for imaging tunnelling wavepackets. Nat. Phys. 18, 417–422 (2022). https://doi.org/10.1038/s41567-022-01505-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01505-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing