Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineering crystal structures with light

Abstract

The crystal structure of a solid largely dictates its electronic, optical and mechanical properties. Indeed, much of the exploration of quantum materials in recent years including the discovery of new phases and phenomena in correlated, topological and two-dimensional materials—has been based on the ability to rationally control crystal structures through materials synthesis, strain engineering or heterostructuring of van der Waals bonded materials. These static approaches, while enormously powerful, are limited by thermodynamic and elastic constraints. An emerging avenue of study has focused on extending such structural control to the dynamical regime by using resonant laser pulses to drive vibrational modes in a crystal. This paradigm of ‘nonlinear phononics’ provides a basis for rationally designing the structure and symmetry of crystals with light, allowing for the manipulation of functional properties at high speed and, in many instances, beyond what may be possible in equilibrium. Here we provide an overview of the developments in this field, discussing the theory, applications and future prospects of optical crystal structure engineering.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Depiction of the current frontiers in manipulating quantum materials via structural control.
Fig. 2: Distorting crystal structure via nonlinear phononics.
Fig. 3: Structural distortions and physical property control via nonlinear phononics and THz optical excitation.

References

  1. 1.

    Kim, H. H. et al. Uniaxial pressure control of competing orders in a high-temperature superconductor. Science 362, 1040–1044 (2018).

    ADS  Article  Google Scholar 

  2. 2.

    Moll, P. J. W. Focused ion beam microstructuring of quantum matter. Annu. Rev. Condens. Matter Phys. 9, 147–162 (2018).

    ADS  Article  Google Scholar 

  3. 3.

    Boschker, H. & Mannhart, J. Quantum-matter heterostructures. Annu. Rev. Condens. Matter Phys. 8, 145–164 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  5. 5.

    Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Nova, T. F. et al. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    ADS  Article  Google Scholar 

  8. 8.

    Disa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).

    Article  Google Scholar 

  9. 9.

    Radaelli, P. G. Breaking symmetry with light: ultrafast ferroelectricity and magnetism from three-phonon coupling. Phys. Rev. B 97, 085145 (2018).

    ADS  Article  Google Scholar 

  10. 10.

    Subedi, A., Cavalleri, A. & Georges, A. Theory of nonlinear phononics for coherent light control of solids. Phys. Rev. B 89, 220301 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Juraschek, D. M., Fechner, M. & Spaldin, N. A. Ultrafast structure switching through nonlinear phononics. Phys. Rev. Lett. 118, 054101 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Liu, B. et al. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz. Opt. Lett. 42, 129–131 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    Sell, A., Leitenstorfer, A. & Huber, R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Opt. Lett. 33, 2767 (2008).

    ADS  Article  Google Scholar 

  14. 14.

    Salén, P. et al. Matter manipulation with extreme terahertz light: progress in the enabling THz technology. Phys. Rep. 836-837, 1–74 (2019).

    ADS  Article  Google Scholar 

  15. 15.

    Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    Article  Google Scholar 

  16. 16.

    Först, M. et al. Driving magnetic order in a manganite by ultrafast lattice excitation. Phys. Rev. B 84, 241104 (2011).

    ADS  Article  Google Scholar 

  17. 17.

    Först, M. et al. Displacive lattice excitation through nonlinear phononics viewed by femtosecond X-ray diffraction. Solid State Commun. 169, 24–27 (2013).

    ADS  Article  Google Scholar 

  18. 18.

    Juraschek, D. M. & Maehrlein, S. F. Sum-frequency ionic Raman scattering. Phys. Rev. B 97, 174302 (2018).

    ADS  Article  Google Scholar 

  19. 19.

    Maehrlein, S., Paarmann, A., Wolf, M. & Kampfrath, T. Terahertz sum-frequency excitation of a Raman-active phonon. Phys. Rev. Lett. 119, 127402 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Kozina, M. et al. Terahertz-driven phonon upconversion in SrTiO3. Nat. Phys. 15, 387–392 (2019).

    Article  Google Scholar 

  21. 21.

    Gu, M. & Rondinelli, J. M. Coupled Raman–Raman modes in the ionic Raman scattering process. Appl. Phys. Lett. 113, 112903 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Cartella, A., Nova, T. F., Fechner, M., Merlin, R. & Cavalleri, A. Parametric amplification of optical phonons. Proc. Natl Acad. Sci. USA 115, 12148–12151 (2018).

    ADS  Article  Google Scholar 

  23. 23.

    von Hoegen, A., Mankowsky, R., Fechner, M., Först, M. & Cavalleri, A. Probing the interatomic potential of solids with strong-field nonlinear phononics. Nature 555, 79–82 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Dastrup, B. S., Hall, J. R. & Johnson, J. A. Experimental determination of the interatomic potential in LiNbO3 via ultrafast lattice control. Appl. Phys. Lett. 110, 162901 (2017).

    ADS  Article  Google Scholar 

  25. 25.

    Maehrlein, S. F. et al. Dissecting spin-phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation. Sci. Adv. 4, eaar5164 (2018).

    ADS  Article  Google Scholar 

  26. 26.

    Mankowsky, R., von Hoegen, A., Först, M. & Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132–136 (2016).

    Article  Google Scholar 

  28. 28.

    Mankowsky, R. et al. Optically induced lattice deformations, electronic structure changes, and enhanced superconductivity in YBa2Cu3O6.48. Struct. Dyn. 4, 044007 (2017).

    Article  Google Scholar 

  29. 29.

    Liu, B. et al. Pump frequency resonances for light-induced incipient superconductivity in YBa2Cu3O6.5. Phys. Rev. 10, 011053 (2020).

    Article  Google Scholar 

  30. 30.

    Afanasiev, D. et al. Ultrafast control of magnetic interactions via light-driven phonons. Nat. Mater. 20, 607–611 (2021).

    ADS  Article  Google Scholar 

  31. 31.

    Fechner, M. et al. Magnetophononics: ultrafast spin control through the lattice. Phys. Rev. Mater. 2, 064401 (2018).

  32. 32.

    Gu, M. & Rondinelli, J. M. Role of orbital filling on nonlinear ionic Raman scattering in perovskite titanates. Phys. Rev. B 95, 024109 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Gu, M. & Rondinelli, J. M. Nonlinear phononic control and emergent magnetism in Mott insulating titanates. Phys. Rev. B 98, 024102 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Stupakiewicz, A. et al. Ultrafast phononic switching of magnetization. Nat. Phys. 17, 489–492 (2021).

    Article  Google Scholar 

  35. 35.

    Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    ADS  Article  Google Scholar 

  36. 36.

    Müller, K. A. & Burkard, H. SrTiO3: an intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19, 3593–3602 (1979).

    ADS  Article  Google Scholar 

  37. 37.

    Pertsev, N. A., Tagantsev, A. K. & Setter, N. Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys. Rev. B 61, R825–R829 (2000).

    ADS  Article  Google Scholar 

  38. 38.

    Chen, F. et al. Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO3. Phys. Rev. B 94, 180104 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Qi, T., Shin, Y.-H., Yeh, K.-L., Nelson, K. A. & Rappe, A. M. Collective coherent control: synchronization of polarization in ferroelectric PbTiO3 by shaped THz fields. Phys. Rev. Lett. 102, 247603 (2009).

    ADS  Article  Google Scholar 

  40. 40.

    Li, Q. et al. Subterahertz collective dynamics of polar vortices. Nature 592, 376–380 (2021).

    ADS  Article  Google Scholar 

  41. 41.

    Li, X. et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

    ADS  Article  Google Scholar 

  42. 42.

    Kubacka, T. et al. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343, 1333–1336 (2014).

    ADS  Article  Google Scholar 

  43. 43.

    Kim, H. et al. Direct observation of mode-specific phonon–band gap coupling in methylammonium lead halide perovskites. Nat. Commun. 8, 687 (2017).

    ADS  Article  Google Scholar 

  44. 44.

    Vaswani, C. et al. Light-driven Raman coherence as a nonthermal route to ultrafast topology switching in a Dirac semimetal. Phys. Rev. 10, 021013 (2020).

    Article  Google Scholar 

  45. 45.

    Luo, L. et al. A light-induced phononic symmetry switch and giant dissipationless topological photocurrent in ZrTe5. Nat. Mater. 20, 329–334 (2021).

    ADS  Article  Google Scholar 

  46. 46.

    Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).

    ADS  Article  Google Scholar 

  47. 47.

    Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    ADS  Article  Google Scholar 

  48. 48.

    Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    ADS  Article  Google Scholar 

  49. 49.

    Merlin, R. Generating coherent THz phonons with light pulses. Solid State Commun. 102, 207–220 (1997).

    ADS  Article  Google Scholar 

  50. 50.

    Ichikawa, H. et al. Transient photoinduced ‘hidden’ phase in a manganite. Nat. Mater. 10, 101–105 (2011).

    ADS  Article  Google Scholar 

  51. 51.

    Kogar, A. et al. Light-induced charge density wave in LaTe3. Nat. Phys. 16, 159–163 (2020).

    Article  Google Scholar 

  52. 52.

    Teitelbaum, S. W. et al. Real-time observation of a coherent lattice transformation into a high-symmetry phase. Phys. Rev. 8, 031081 (2018).

    Article  Google Scholar 

  53. 53.

    Beaud, P. et al. Ultrafast structural phase transition driven by photoinduced melting of charge and orbital order. Phys. Rev. Lett. 103, 155702 (2009).

    ADS  Article  Google Scholar 

  54. 54.

    Cavalleri, A. et al. Femtosecond structural dynamics in VO2 during an ultrafast solid–solid phase transition. Phys. Rev. Lett. 87, 237401 (2001).

    ADS  Article  Google Scholar 

  55. 55.

    Fritz, D. M. et al. Ultrafast bond softening in bismuth: mapping a solid’s interatomic potential with X-rays. Science 315, 633–636 (2007).

    ADS  Article  Google Scholar 

  56. 56.

    Wall, S. et al. Ultrafast changes in lattice symmetry probed by coherent phonons. Nat. Commun. 3, 721 (2012).

    ADS  Article  Google Scholar 

  57. 57.

    Ismail-Beigi, S. et al. Picoscale materials engineering. Nat. Rev. Mater. 2, 17060 (2017).

    ADS  Article  Google Scholar 

  58. 58.

    Qian, X. et al. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    ADS  Article  Google Scholar 

  59. 59.

    Okabe, H., Takeshita, N., Horigane, K., Muranaka, T. & Akimitsu, J. Pressure-induced high-Tc superconducting phase in FeSe: correlation between anion height and Tc. Phys. Rev. B 81, 205119 (2010).

    ADS  Article  Google Scholar 

  60. 60.

    Park, J., Yeu, I. W., Han, G., Hwang, C. S. & Choi, J.-H. Ferroelectric switching in bilayer 3R MoS2 via interlayer shear mode driven by nonlinear phononics. Sci. Rep. 9, 14919 (2019).

    ADS  Article  Google Scholar 

  61. 61.

    Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).

    Article  Google Scholar 

  62. 62.

    Caviglia, A. D. et al. Ultrafast strain engineering in complex oxide heterostructures. Phys. Rev. Lett. 108, 136801 (2012).

    ADS  Article  Google Scholar 

  63. 63.

    Först, M. et al. Multiple supersonic phase fronts launched at a complex-oxide heterointerface. Phys. Rev. Lett. 118, 027401 (2017).

    ADS  Article  Google Scholar 

  64. 64.

    Johnson, C. L., Knighton, B. E. & Johnson, J. A. Distinguishing nonlinear terahertz excitation pathways with two-dimensional spectroscopy. Phys. Rev. Lett. 122, 073901 (2019).

    ADS  Article  Google Scholar 

  65. 65.

    Rossi, M. et al. Experimental determination of momentum-resolved electron–phonon coupling. Phys. Rev. Lett. 123, 027001 (2019).

    ADS  Article  Google Scholar 

  66. 66.

    Stern, M. J. et al. Mapping momentum-dependent electron–phonon coupling and nonequilibrium phonon dynamics with ultrafast electron diffuse scattering. Phys. Rev. B 97, 165416 (2018).

    ADS  Article  Google Scholar 

  67. 67.

    Trigo, M. et al. Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon–phonon correlations. Nat. Phys. 9, 790–794 (2013).

    Article  Google Scholar 

  68. 68.

    Sentef, M. A., Ruggenthaler, M. & Rubio, A. Cavity quantum-electrodynamical polaritonically enhanced electron–phonon coupling and its influence on superconductivity. Sci. Adv. 4, eaau6969 (2018).

    ADS  Article  Google Scholar 

  69. 69.

    Juraschek, D. M., Neuman, T., Flick, J. & Narang, P. Cavity control of nonlinear phononics. Phys. Rev. Res. 3, L032046 (2021).

    Article  Google Scholar 

  70. 70.

    Kaiser, S. et al. Optical properties of a vibrationally modulated solid state Mott insulator. Sci. Rep. 4, 3823 (2014).

    Article  Google Scholar 

  71. 71.

    Singla, R. et al. THz-frequency modulation of the Hubbard U in an organic Mott insulator. Phys. Rev. Lett. 115, 187401 (2015).

    ADS  Article  Google Scholar 

  72. 72.

    Martin, T. P. & Genzel, L. Ionic Raman scattering and ionic frequency mixing. Phys. Stat. Sol. B 61, 493–502 (1974).

    ADS  Article  Google Scholar 

  73. 73.

    Neugebauer, M. J. et al. Comparison of coherent phonon generation by electronic and ionic Raman scattering in LaAlO3. Phys. Rev. Res. 3, 013126 (2021).

    Article  Google Scholar 

  74. 74.

    Khalsa, G. & Benedek, N. A. Ultrafast optically induced ferromagnetic/anti-ferromagnetic phase transition in GdTiO3 from first principles. npj Quant. Mater. 3, 15 (2018).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Fechner, M. Först, R. Merlin and P. Radaelli for numerous valuable discussions. A.S.D. acknowledges fellowship support from the Alexander von Humboldt Foundation. T.F.N. was supported by the ETH Zürich Postdoctoral Fellowship programme.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ankit S. Disa or Andrea Cavalleri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Lara Benfatto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Disa, A.S., Nova, T.F. & Cavalleri, A. Engineering crystal structures with light. Nat. Phys. 17, 1087–1092 (2021). https://doi.org/10.1038/s41567-021-01366-1

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing