Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Nanocrystal phononics

Abstract

Colloidal nanocrystals are successfully used as nanoscale building blocks for creating hierarchical solids with structures that range from amorphous networks to sophisticated periodic superlattices. Recently, it has been observed that these superlattices exhibit collective vibrations, which stem from the correlated motion of the nanocrystals, with their surface-bound ligands acting as molecular linkers. In this Perspective, we describe the work so far on collective vibrations in nanocrystal solids and their as-of-yet untapped potential for phononic applications. With the ability to engineer vibrations in the hypersonic regime through the choice of nanocrystal and linker composition, as well as by controlling their size, shape and chemical interactions, such superstructures offer new opportunities for phononic crystals, acoustic metamaterials and optomechanical systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanocrystal superlattices and their vibrations.
Fig. 2: Collective vibrations in NC solids.
Fig. 3: Scaling of vibrations.
Fig. 4: Phonon engineering.

Similar content being viewed by others

References

  1. Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    Article  CAS  Google Scholar 

  2. Santos, P. J., Gabrys, P. A., Zornberg, L. Z., Lee, M. S. & Macfarlane, R. J. Macroscopic materials assembled from nanoparticle superlattices. Nature 591, 586–591 (2021).

    Article  CAS  Google Scholar 

  3. Deng, K., Luo, Z., Tan, L. & Quan, Z. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem. Soc. Rev. 49, 6002–6038 (2020).

    Article  CAS  Google Scholar 

  4. Paik, T., Diroll, B. T., Kagan, C. R. & Murray, C. B. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods. J. Am. Chem. Soc. 137, 6662–6669 (2015).

    Article  CAS  Google Scholar 

  5. Weidman, M. C., Nguyen, Q., Smilgies, D.-M. & Tisdale, W. A. Impact of size dispersity, ligand coverage, and ligand length on the structure of PbS nanocrystal superlattices. Chem. Mater. 30, 807–816 (2018).

    Article  CAS  Google Scholar 

  6. Kagan, C. R., Lifshitz, E., Sargent, E. H. & Talapin, D. V. Building devices from colloidal quantum dots. Science 353, aac5523 (2016).

  7. Liu, M. et al. Colloidal quantum dot electronics. Nat. Electron. 4, 548–558 (2021).

    Article  Google Scholar 

  8. Kagan, C. R., Bassett, L. C., Murray, C. B. & Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 121, 3186–3233 (2020).

    Article  Google Scholar 

  9. García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

    Article  Google Scholar 

  10. Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    Article  Google Scholar 

  11. Cherniukh, I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 593, 535–542 (2021).

  12. Yazdani, N. et al. Nanocrystal superlattices as phonon-engineered solids and acoustic metamaterials. Nat. Commun. 10, 4236 (2019).

    Article  Google Scholar 

  13. Girard, A. et al. Mechanical coupling in gold nanoparticles supermolecules revealed by plasmon-enhanced ultralow frequency raman spectroscopy. Nano Lett. 16, 3843–3849 (2016).

    Article  CAS  Google Scholar 

  14. Mork, A. J., Lee, E. M. Y., Dahod, N. S., Willard, A. P. & Tisdale, W. A. Modulation of low-frequency acoustic vibrations in semiconductor nanocrystals through choice of surface ligand. J. Phys. Chem. Lett. 7, 4213–4216 (2016).

    Article  CAS  Google Scholar 

  15. Saviot, L., Champagnon, B., Duval, E. & Ekimov, A. I. Size-selective resonant Raman scattering in CdS doped glasses. Phys. Rev. B 57, 341–346 (1998).

    Article  CAS  Google Scholar 

  16. Lee, E. M. Y., Mork, A. J., Willard, A. P. & Tisdale, W. A. Including surface ligand effects in continuum elastic models of nanocrystal vibrations. J. Chem. Phys. 147, 044711 (2017).

    Article  Google Scholar 

  17. Girard, A. et al. The mass load effect on the resonant acoustic frequencies of colloidal semiconductor nanoplatelets. Nanoscale 8, 13251–13256 (2016).

    Article  CAS  Google Scholar 

  18. Mattarelli, M., Montagna, M., Still, T., Schneider, D. & Fytas, G. Vibration spectroscopy of weakly interacting mesoscopic colloids. Soft Matter 8, 4235–4243 (2012).

    Article  CAS  Google Scholar 

  19. Sadat, S. M. & Wang, R. Y. Colloidal nanocrystal superlattices as phononic crystals: plane wave expansion modeling of phonon band structure. RSC Adv. 6, 44578–44587 (2016).

    Article  CAS  Google Scholar 

  20. Jansen, M., Yazdani, N. & Wood, V. Phonon-engineered solids constructed from nanocrystals. APL Mater. 7, 081124 (2019).

    Article  Google Scholar 

  21. Diroll, B. T., Kamysbayev, V., Coropceanu, I., Talapin, D. V. & Schaller, R. D. Heat-driven acoustic phonons in lamellar nanoplatelet assemblies. Nanoscale 12, 9661–9668 (2020).

    Article  CAS  Google Scholar 

  22. Poyser, C. L. et al. Coherent acoustic phonons in colloidal semiconductor nanocrystal superlattices. ACS Nano 10, 1163–1169 (2016).

    Article  CAS  Google Scholar 

  23. Ruello, P. et al. Ultrafast acousto-plasmonics in gold nanoparticle superlattices. Phys. Rev. B 92, 174304 (2015).

    Article  Google Scholar 

  24. Lisiecki, I., Halté, V., Petit, C., Pileni, M. P. & Bigot, J. Y. Vibration dynamics of supra-crystals of cobalt nanocrystals studied with femtosecond laser pulses. Adv. Mater. 20, 4176–4179 (2008).

    CAS  Google Scholar 

  25. Lisiecki, I. et al. Coherent longitudinal acoustic phonons in three-dimensional supracrystals of cobalt nanocrystals. Nano Lett. 13, 4914–4919 (2013).

    Article  CAS  Google Scholar 

  26. Gomopoulos, N., Cheng, W., Efremov, M., Nealey, P. F. & Fytas, G. Out-of-plane longitudinal elastic modulus of supported polymer thin films. Macromolecules 42, 7164–7167 (2009).

    Article  CAS  Google Scholar 

  27. Dhar, L., Rogers, J. A. & Nelson, K. A. Time-resolved vibrational spectroscopy in the impulsive limit. Chem. Rev. 94, 157–193 (1994).

    Article  CAS  Google Scholar 

  28. Schnitzenbaumer, K. J. & Dukovic, G. Comparison of phonon damping behavior in quantum dots capped with organic and inorganic ligands. Nano Lett. 18, 3667–3674 (2018).

    Article  CAS  Google Scholar 

  29. Kambhampati, P. Hot exciton relaxation dynamics in semiconductor quantum dots: radiationless transitions on the nanoscale. J. Phys. Chem. C 115, 22089–22109 (2011).

    Article  CAS  Google Scholar 

  30. Cerullo, G., De Silvestri, S. & Banin, U. Size-dependent dynamics of coherent acoustic phonons in nanocrystal quantum dots. Phys. Rev. B 60, 1928–1932 (1999).

    Article  CAS  Google Scholar 

  31. Diroll, B. T., Guo, P. & Schaller, R. D. Heat transfer at hybrid interfaces: interfacial ligand-to-nanocrystal heating monitored with infrared pump, electronic probe spectroscopy. Nano Lett. 18, 7863–7869 (2018).

    Article  CAS  Google Scholar 

  32. Wang, Z. et al. Quantization of acoustic modes in dumbbell nanoparticles. Phys. Rev. Lett. 128, 48003 (2022).

    Article  CAS  Google Scholar 

  33. Graczykowski, B., Vogel, N., Bley, K., Butt, H.-J. & Fytas, G. Multiband hypersound filtering in two-dimensional colloidal crystals: adhesion, resonances, and periodicity. Nano Lett. 20, 1883–1889 (2020).

    Article  CAS  Google Scholar 

  34. Girard, A. et al. Acoustic mode hybridization in a single dimer of gold nanoparticles. Nano Lett. 18, 3800–3806 (2018).

    Article  CAS  Google Scholar 

  35. Girard, A. et al. Inelastic light scattering by multiple vibrational modes in individual gold nanodimers. J. Phys. Chem. C 123, 14834–14841 (2019).

    Article  CAS  Google Scholar 

  36. Rolle, K., Yaremkevich, D., Scherbakov, A. V., Bayer, M. & Fytas, G. Lifting restrictions on coherence loss when characterizing non-transparent hypersonic phononic crystals. Sci. Rep. 11, 17174 (2021).

    Article  CAS  Google Scholar 

  37. Gupalov, S. V. & Merkulov, I. A. Theory of Raman light scattering by nanocrystal acoustic vibrations. Phys. Solid State 41, 1349–1358 (1999).

    Article  CAS  Google Scholar 

  38. Takagahara, T. Electron—phonon interactions in semiconductor nanocrystals. J. Lumin. 70, 129–143 (1996).

    Article  CAS  Google Scholar 

  39. Noual, A. et al. Optomechanic coupling in Ag polymer nanocomposite films. J. Phys. Chem. C 125, 14854–14864 (2021).

    Article  CAS  Google Scholar 

  40. Zanjani, M. B. & Lukes, J. R. Shape- and structure-based phonon bandgap tuning with nanocrystal superlattices. J. Phys. Chem. C 119, 16889–16896 (2015).

    Article  CAS  Google Scholar 

  41. Dahod, N. S., France-Lanord, A., Paritmongkol, W., Grossman, J. C. & Tisdale, W. A. Low-frequency Raman spectrum of 2D layered perovskites: local atomistic motion or superlattice modes? J. Chem. Phys. 153, 044710 (2020).

    Article  CAS  Google Scholar 

  42. Ong, W.-L., Majumdar, S., Malen, J. A. & McGaughey, A. J. H. Coupling of organic and inorganic vibrational states and their thermal transport in nanocrystal arrays. J. Phys. Chem. C 118, 7288–7295 (2014).

    Article  CAS  Google Scholar 

  43. Shao, C. & Shiomi, J. Negligible contribution of inter-dot coherent modes to heat conduction in quantum-dot superlattice. Mater. Today Phys. 22, 100601 (2022).

    Article  CAS  Google Scholar 

  44. Guo, P. et al. Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites. Nat. Commun. 9, 2019 (2018).

    Article  Google Scholar 

  45. Dreyer, A. et al. Organically linked iron oxide nanoparticle supercrystals with exceptional isotropic mechanical properties. Nat. Mater. 15, 522–528 (2016).

    Article  CAS  Google Scholar 

  46. Wang, Z. et al. Ligand crosslinking boosts thermal transport in colloidal nanocrystal solids. Angew. Chem. Int. Ed. 59, 9556–9563 (2020).

    Article  CAS  Google Scholar 

  47. Jansen, M., Juranyi, F., Yarema, O., Seydel, T. & Wood, V. Ligand dynamics in nanocrystal solids studied with quasi-elastic neutron scattering. ACS Nano 15, 20517–20526 (2021).

    Article  CAS  Google Scholar 

  48. Martinet, Q. et al. Ligand-dependent nano-mechanical properties of CdSe nanoplatelets: calibrating nanobalances for ligand affinity monitoring. Nanoscale 13, 8639–8647 (2021).

    Article  CAS  Google Scholar 

  49. Stahley, J. B. & Zanjani, M. B. Multifarious colloidal structures: new insight into ternary and quadripartite ordered assemblies. Nanoscale 13, 16554–16563 (2021).

    Article  CAS  Google Scholar 

  50. Ong, W.-L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat. Mater. 12, 410–415 (2013).

    Article  CAS  Google Scholar 

  51. Cheng, W., Wang, J., Jonas, U., Fytas, G. & Stefanou, N. Observation and tuning of hypersonic bandgaps in colloidal crystals. Nat. Mater. 5, 830–836 (2006).

    Article  CAS  Google Scholar 

  52. Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).

    Article  CAS  Google Scholar 

  53. Phillips, K. R. et al. A colloidoscope of colloid-based porous materials and their uses. Chem. Soc. Rev. 45, 281–322 (2016).

    Article  CAS  Google Scholar 

  54. Vasileiadis, T. et al. Progress and perspectives on phononic crystals. J. Appl. Phys. 129, 160901 (2021).

    Article  CAS  Google Scholar 

  55. Devkota, T., Yu, K. & Hartland, G. V. Mass loading effects in the acoustic vibrations of gold nanoplates. Nanoscale 11, 16208–16213 (2019).

  56. Volz, S. et al. Nanophononics: state of the art and perspectives. Eur. Phys. J. B 89, 15 (2016).

    Article  Google Scholar 

  57. Cang, Y., Jin, Y., Djafari-Rouhani, B. & Fytas, G. Fundamentals, progress and perspectives on high-frequency phononic crystals. J. Phys. D 55, 193002 (2022).

  58. Wang, Y. F., Wang, Y. Z., Wu, B., Chen, W. & Wang, Y. S. Tunable and active phononic crystals and metamaterials. Appl. Mech. Rev. 72, 040801 (2020).

  59. Alonso-Redondo, E. et al. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids. Nat. Commun. 6, 8309 (2015).

    Article  CAS  Google Scholar 

  60. Aryana, K. & Zanjani, M. B. Diamond family of colloidal supercrystals as phononic metamaterials. J. Appl. Phys. 123, 185103 (2018).

    Article  Google Scholar 

  61. Delsing, P. et al. The 2019 surface acoustic waves roadmap. J. Phys. D 52, 353001 (2019).

  62. Vogele, A. et al. Quantum dot optomechanics in suspended nanophononic strings. Adv. Quantum Technol. 3, 1900102 (2020).

  63. Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).

    Article  CAS  Google Scholar 

  64. Chu, Y. & Gröblacher, S. A perspective on hybrid quantum opto- and electromechanical systems. Appl. Phys. Lett. 117, 150503 (2020).

    Article  CAS  Google Scholar 

  65. Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009).

    Article  CAS  Google Scholar 

  66. MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

    Article  CAS  Google Scholar 

  67. Cunha, J. et al. Controlling light, heat, and vibrations in plasmonics and phononics. Adv. Opt. Mater. 8, 2001225 (2020).

    Article  CAS  Google Scholar 

  68. Cargnello, M. et al. Substitutional doping in nanocrystal superlattices. Nature 524, 450–453 (2015).

    Article  CAS  Google Scholar 

  69. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).

    Article  CAS  Google Scholar 

  70. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  71. Cherniukh, I. et al. Shape-directed co-assembly of lead halide perovskite nanocubes with dielectric nanodisks into binary nanocrystal superlattices. ACS Nano 15, 16488–16500 (2021).

    Article  CAS  Google Scholar 

  72. Mao, N. et al. Resonance-enhanced excitation of interlayer vibrations in atomically thin black phosphorus. Nano Lett. 21, 4809–4815 (2021).

    Article  CAS  Google Scholar 

  73. Macfarlane, R. J. From nano to macro: thinking bigger in nanoparticle assembly. Nano Lett. 21, 7432–7434 (2021).

    Article  CAS  Google Scholar 

  74. Vogel, N., de Viguerie, L., Jonas, U., Weiss, C. K. & Landfester, K. Wafer-scale fabrication of ordered binary colloidal monolayers with adjustable stoichiometries. Adv. Funct. Mater. 21, 3064–3073 (2011).

    Article  CAS  Google Scholar 

  75. Gaulding, E. A. et al. Deposition of wafer-scale single-component and binary nanocrystal superlattice thin films via dip-coating. Adv. Mater. 27, 2846–2851 (2015).

    Article  CAS  Google Scholar 

  76. Barad, H. N., Kwon, H., Alarcón-Correa, M. & Fischer, P. Large area patterning of nanoparticles and nanostructures: current status and future prospects. ACS Nano 15, 5861–5875 (2021).

    Article  CAS  Google Scholar 

  77. Si, K. J., Chen, Y., Shi, Q. & Cheng, W. Nanoparticle superlattices: the roles of soft ligands. Adv. Sci. 5, 1700179 (2018).

    Article  Google Scholar 

  78. Weidman, M. C., Smilgies, D.-M. & Tisdale, W. A. Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering. Nat. Mater. 15, 775–781 (2016).

    Article  CAS  Google Scholar 

  79. Winslow, S. W., Swan, J. W. & Tisdale, W. A. The importance of unbound ligand in nanocrystal superlattice formation. J. Am. Chem. Soc. 142, 9675–9685 (2020).

    CAS  Google Scholar 

  80. Winslow, S. W., Smilgies, D. M., Swan, J. W. & Tisdale, W. A. Reversible temperature-induced structural transformations in PbS nanocrystal superlattices. J. Phys. Chem. C 124, 13456–13466 (2020).

    Article  CAS  Google Scholar 

  81. Boles, M. A. & Talapin, D. V. Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases. J. Am. Chem. Soc. 137, 4494–4502 (2015).

    Article  CAS  Google Scholar 

  82. Schulz, F., Lokteva, I., Parak, W. J. & Lehmkühler, F. Recent notable approaches to study self‐assembly of nanoparticles with X‐ray scattering and electron microscopy. Part. Part. Syst. Charact. 38, 2100087 (2021).

    Article  Google Scholar 

  83. Jishkariani, D. et al. Nanocrystal core size and shape substitutional doping and underlying crystalline order in nanocrystal superlattices article. ACS Nano 13, 5712–5719 (2019).

    Article  CAS  Google Scholar 

  84. Coropceanu, I. et al. Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals. Science 375, 1422–1426 (2022).

    Article  CAS  Google Scholar 

  85. Begley, M. R., Gianola, D. S. & Ray, T. R. Bridging functional nanocomposites to robust macroscale devices. Science 364, eaav4299 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.J. and V.W. acknowledge support from the Swiss National Science Foundation through project no. 175889, the Quantum Sciences and Technology, National Centre of Competence in Research. W.A.T. was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under award number DE-SC0021025.

Author information

Authors and Affiliations

Authors

Contributions

M.J., W.A.T. and V.W. contributed to the discussion of content and revisions of the manuscript. V.W. conceived the idea; M.J. wrote the manuscript and made the illustrations. All authors read and approved the final manuscript contents.

Corresponding author

Correspondence to Vanessa Wood.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks George Fytas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansen, M., Tisdale, W.A. & Wood, V. Nanocrystal phononics. Nat. Mater. 22, 161–169 (2023). https://doi.org/10.1038/s41563-022-01438-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01438-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing