Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deterministic multi-mode gates on a scalable photonic quantum computing platform

Abstract

Quantum computing can be realized with numerous different hardware platforms and computational protocols. A highly promising, and potentially scalable, idea is to combine a photonic platform with measurement-induced quantum information processing. In this approach, gate operations can be implemented through optical measurements on a multipartite entangled quantum state—a so-called cluster state. Previously, a few quantum gates on non-universal or non-scalable cluster states have been performed, but a full set of gates for universal scalable quantum computing has not been realized. Here we propose and demonstrate the deterministic implementation of a multi-mode set of measurement-induced quantum gates in a large two-dimensional optical cluster state using phase-controlled continuous-variable quadrature measurements. Each gate is programmed into the phases of high-efficiency quadrature measurements, which execute the transformations by teleportation through the cluster state. We further execute a small quantum circuit consisting of 10 single-mode gates and 2 two-mode gates on a three-mode input state. Fault-tolerant universal quantum computing is possible with this platform if the cluster-state entanglement is improved and a supply of states with Gottesman–Kitaev–Preskill encoding is available.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Experimental set-up and computation scheme.
Fig. 2: Single-mode gates.
Fig. 3: Two-mode gate.
Fig. 4: Quantum circuit.

Data availability

Raw data and corresponding data analysis code that support the findings of this study (Figs. 24) are available at figshare with the identifier https://doi.org/10.11583/DTU.1467357053.

References

  1. Egan, L. et al. Fault-tolerant operation of a quantum error-correction code. Preprint at https://arxiv.org/pdf/2009.11482.pdf (2020).

  2. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  ADS  Google Scholar 

  3. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  4. Larsen, M. V., Guo, X., Breum, C. R., Neergaard-Nielsen, J. S. & Andersen, U. L. Deterministic generation of a two-dimensional cluster state. Science 366, 369–372 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Asavanant, W. et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science 366, 373–376 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  6. Asavanant, W. et al. One-hundred step measurement-based quantum computation multiplexed in the time domain with 25-MHz clock frequency. Preprint at https://arxiv.org/pdf/2006.11537.pdf (2020).

  7. Lloyd, S. & Braunstein, S. L. Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784–1787 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Menicucci, N. C. et al. Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006).

    Article  ADS  Google Scholar 

  9. Lund, A. P., Ralph, T. C. & Haselgrove, H. L. Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2008).

    Article  ADS  Google Scholar 

  10. Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    Article  ADS  Google Scholar 

  11. Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

    Article  ADS  Google Scholar 

  12. Andersen, U. L., Neergaard-Nielsen, J. S., van Loock, P. & Furusawa, A. Hybrid discrete- and continuous-variable quantum information. Nat. Phys. 11, 713–719 (2015).

    Article  Google Scholar 

  13. Menicucci, N. C. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. Phys. Rev. Lett. 112, 120504 (2014).

    Article  ADS  Google Scholar 

  14. Baragiola, B. Q., Pantaleoni, G., Alexander, R. N., Karanjai, A. & Menicucci, N. C. All-Gaussian universality and fault tolerance with the Gottesman–Kitaev–Preskill code. Phys. Rev. Lett. 123, 200502 (2019).

    Article  ADS  Google Scholar 

  15. Yamasaki, H., Matsuura, T. & Koashi, M. Cost-reduced all-Gaussian universality with the Gottesman–Kitaev–Preskill code: resource-theoretic approach to cost analysis. Phys. Rev. Res. 2, 023270 (2020).

    Article  Google Scholar 

  16. Fukui, K., Tomita, A., Okamoto, A. & Fujii, K. High-threshold fault-tolerant quantum computation with analog quantum error correction. Phys. Rev. X 8, 021054 (2018).

    Google Scholar 

  17. Noh, K. & Chamberland, C. Fault-tolerant bosonic quantum error correction with the surface Gottesman–Kitaev–Preskil code. Phys. Rev. A 101, 012316 (2020).

    Article  ADS  Google Scholar 

  18. Ukai, R. et al. Demonstration of unconditional one-way quantum computations for continuous variables. Phys. Rev. Lett. 106, 240504 (2011).

    Article  ADS  Google Scholar 

  19. Ukai, R., Yokoyama, S., Yoshikawa, J.-i, van Loock, P. & Furusawa, A. Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation. Phys. Rev. Lett. 107, 250501 (2011).

    Article  ADS  Google Scholar 

  20. Su, X. et al. Gate sequence for continuous variable one-way quantum computation. Nat. Commun. 4, 2828 (2013).

    Article  ADS  Google Scholar 

  21. Reimer, C. et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148–154 (2019).

    Article  Google Scholar 

  22. Gao, W. et al. Experimental measurement-based quantum computing beyond the cluster-state model. Nat. Photon. 5, 117–123 (2011).

    Article  ADS  Google Scholar 

  23. Walther, W. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    Article  ADS  Google Scholar 

  24. Lanyon, B. P. et al. Measurement-based quantum computation with trapped ions. Phys. Rev. Lett. 111, 210501 (2013).

    Article  ADS  Google Scholar 

  25. Hastrup, J., Larsen, M. V., Neergaard-Nielsen, J. S., Menicucci, N. C. & Andersen, U. L. Cubic phase gates are not suitable for non-Clifford operations on GKP states. Phys. Rev. A 103, 032409 (2021).

    Article  ADS  Google Scholar 

  26. Walshe, B. W., Baragiola, B. Q., Alexander, R. N. & Menicucci, N. C. Continuous-variable gate teleportation and bosonic-code error correction. Phys. Rev. A 102, 062411 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  27. Menicucci, N. C. Temporal-mode continuous-variable cluster states using linear optics. Phys. Rev. A 83, 062314 (2011).

    Article  ADS  Google Scholar 

  28. Yokoyama, S. et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photon. 7, 982–986 (2013).

    Article  ADS  Google Scholar 

  29. Menicucci, N. C., Flammia, S. T. & van Loock, P. Graphical calculus for Gaussian pure states. Phys. Rev. A 83, 042335 (2011).

    Article  ADS  Google Scholar 

  30. Alexander, R. N., Armstrong, S. C., Ukai, R. & Menicucci, N. C. Noise analysis of single-mode Gaussian operations using continuous-variable cluster states. Phys. Rev. A 90, 062324 (2014).

    Article  ADS  Google Scholar 

  31. Larsen, M. V., Neergaard-Nielsen, J. S. & Andersen, U. L. Architecture and noise analysis of continuous-variable quantum gates using two-dimensional cluster states. Phys. Rev. A 102, 042608 (2020).

    Article  ADS  Google Scholar 

  32. Alexander, R. N. et al. One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator. Phys. Rev. A 94, 032327 (2016).

    Article  ADS  Google Scholar 

  33. Ukai, R., Yoshikawa, J.-i, Iwata, N., van Loock, P. & Furusawa, A. Universal linear Bogoliubov transformations through one-way quantum computation. Phys. Rev. A 81, 032315 (2010).

    Article  ADS  Google Scholar 

  34. Gu, M., Weedbrook, C., Menicucci, N. C., Ralph, T. C. & van Loock, P. Quantum computing with continuous-variable clusters. Phys. Rev. A 79, 062318 (2009).

    Article  ADS  Google Scholar 

  35. Walshe, B. W., Mensen, L. J., Baragiola, B. Q. & Menicucci, N. C. Robust fault tolerance for continuous-variable cluster states with excess antisqueezing. Phys. Rev. A 100, 010301(R) (2019).

    Article  ADS  Google Scholar 

  36. Tasker, J. F. et al. Silicon photonics interfaced with integrated electronics for 9 GHz measurement of squeezed light. Nat. Photon. 15, 11–15 (2021).

    Article  ADS  Google Scholar 

  37. Kashiwazaki, T. et al. Continuous-wave 6-dB-squeezed light with 2.5-THz-bandwidth from single-mode PPLN waveguide. APL Photon. 5, 036104 (2020).

    Article  ADS  Google Scholar 

  38. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article  Google Scholar 

  39. Su, D. et al. Implementing quantum algorithms on temporal photonic cluster states. Phys. Rev. A 98, 032316 (2018).

    Article  ADS  Google Scholar 

  40. Cai, Y. et al. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 15645 (2017).

    Article  ADS  Google Scholar 

  41. Chen, M., Menicucci, N. C. & Pfister, O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 112, 120505 (2014).

    Article  ADS  Google Scholar 

  42. Armstrong, S. et al. Programmable multimode quantum networks. Nat. Commun. 3, 1026 (2012).

    Article  ADS  Google Scholar 

  43. Larsen, M. V., Chamberland, C., Noh, K., Neergaard-Nielsen, J. S. & Andersen, U. L. A fault-tolerant continuous-variable measurement-based quantum computation architecture. Preprint at https://arxiv.org/pdf/2101.03014.pdf (2021).

  44. Vahlbruch, H., Mehmet, M., Danzmann, K. & Schnabel, R. Detection of 15-dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 117, 110801 (2016).

    Article  ADS  Google Scholar 

  45. Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).

    Article  ADS  Google Scholar 

  46. Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020).

    Article  Google Scholar 

  47. Pirandola, S., Mancini, S., Vitali, D. & Tombesi, P. Generating continuous variable quantum codewords in the near-field atomic lithography. J. Phys. B 39, 997 (2006).

    Article  ADS  Google Scholar 

  48. Motes, K. R., Baragiola, B. Q., Gilchrist, A. & Menicucci, N. C. Encoding qubits into oscillators with atomic ensembles and squeezed light. Phys. Rev. A 95, 053819 (2017).

    Article  ADS  Google Scholar 

  49. Weigand, D. J. & Terhal, B. M. Generating grid states from Schrödinger-cat states without postselection. Phys. Rev. A 97, 022341 (2018).

    Article  ADS  Google Scholar 

  50. Eaton, M., Nehra, R. & Pfister, O. Non-Gaussian and Gottesman–Kitaev–Preskill state preparation by photon catalysis. New J. Phys. 21, 113034 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  51. Su, D., Myers, C. R. & Sabapathy, K. K. Conversion of Gaussian states to non-Gaussian states using photon-number-resolving detectors. Phys. Rev. A 100, 052301 (2019).

    Article  ADS  Google Scholar 

  52. Tzitrin, I., Bourassa, J. E., Menicucci, N. C. & Sabapathy, K. K. Progress towards practical qubit computation using approximate Gottesman–Kitaev–Preskill codes. Phys. Rev. A 101, 032315 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  53. Larsen, M. V., Guo, X., Breum, C. R., Neergaard-Nielsen, J. S. & Andersen, U. L. Deterministic multi-mode gates on a scalable photonic quantum computing platform. figshare https://doi.org/10.11583/DTU.14673570 (2021).

Download references

Acknowledgements

We acknowledge useful discussions with R. N. Alexander and J. Hastrup. The work was supported by the Danish National Research Foundation through the Center for Macroscopic Quantum States (bigQ, DNRF0142).

Author information

Authors and Affiliations

Authors

Contributions

M.V.L. and U.L.A. conceived the project. J.S.N.-N., X.G., C.R.B. and M.V.L. built the squeezing sources. M.V.L. developed the theoretical background, designed the experiment and built the set-up. M.V.L. performed the experiment and data analysis. The project was supervised by U.L.A. and J.S.N.-N. The manuscript was written by U.L.A., M.V.L. and J.S.N.-N., with feedback from all authors.

Corresponding authors

Correspondence to Mikkel V. Larsen or Ulrik L. Andersen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4, Figs. 1–11 and refs. 1–22.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Larsen, M.V., Guo, X., Breum, C.R. et al. Deterministic multi-mode gates on a scalable photonic quantum computing platform. Nat. Phys. 17, 1018–1023 (2021). https://doi.org/10.1038/s41567-021-01296-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01296-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing