Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nematic transition and nanoscale suppression of superconductivity in Fe(Te,Se)


The interplay of different electronic phases underlies the physics of unconventional superconductors. One of the most intriguing examples is a high-temperature superconductor, FeTe1 – xSex (refs. 1,2,3,4,5,6,7,8,9,10,11). This superconductor undergoes both a topological transition3,4, linked to the electronic band inversion, and an electronic nematic phase transition, associated with rotation symmetry breaking, around the same Se composition where the superconducting transition temperature peaks12,13. In this regime, nematic fluctuations and symmetry-breaking strain could be important, but this is yet to be fully explored. Using spectroscopic-imaging scanning tunnelling microscopy, we study the electronic nematic transition in FeTe1 – xSex as a function of composition. Near the critical Se composition, we find electronic nematicity in nanoscale regions. The superconducting coherence peaks are suppressed in areas where static nematic order is the strongest. By analysing atomic displacement in scanning tunnelling microscopy topographs, we find that small anisotropic strain can give rise to these strongly nematic localized regions. Our experiments reveal a tendency of FeTe1 – xSex, near x ≈ 0.45, to form puddles hosting static nematic order, suggestive of nematic fluctuations pinned by structural inhomogeneity, and demonstrate the effect of anisotropic strain on superconductivity in this regime.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nematic transition as a function of composition in Fe(Te,Se).
Fig. 2: Visualizing anisotropy in electron scattering.
Fig. 3: Spectroscopic-imaging STM of critical composition.
Fig. 4: Interplay of strain, QPI amplitude and superconductivity at the nanoscale.

Data availability

Data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The computer code used for data analysis is available upon request from the corresponding author.


  1. Fang, M. H. et al. Superconductivity close to magnetic instability in Fe(Se1 − xTex)0.82. Phys. Rev. B 78, 224503 (2008).

    Article  ADS  Google Scholar 

  2. Hanaguri, T., Niitaka, S., Kuroki, K. & Takagi, H. Unconventional s-wave superconductivity in Fe(Se,Te). Science 328, 474–476 (2010).

    Article  ADS  Google Scholar 

  3. Zhang, P. et al. Multiple topological states in iron-based superconductors. Nat. Phys. 15, 41–47 (2019).

    Article  Google Scholar 

  4. Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182–186 (2018).

    Article  ADS  Google Scholar 

  5. Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).

    Article  ADS  Google Scholar 

  6. Cho, D., Bastiaans, K. M., Chatzopoulos, D., Gu, G. D. & Allan, M. P. A strongly inhomogeneous superfluid in an iron-based superconductor. Nature 571, 541–545 (2019).

    Article  ADS  Google Scholar 

  7. Wang, Z. et al. Evidence for dispersing 1D Majorana channels in an iron-based superconductor. Science 367, 104–108 (2020).

    Article  ADS  Google Scholar 

  8. Machida, T. et al. Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te). Nat. Mater. 18, 811–816 (2019).

    Article  ADS  Google Scholar 

  9. Yin, J.-X. et al. Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se). Nat. Phys. 11, 543–546 (2015).

    Article  Google Scholar 

  10. Singh, U. R. et al. Evidence for orbital order and its relation to superconductivity in FeSe0.4Te0.6. Sci. Adv. 1, e1500206 (2015).

    Article  ADS  Google Scholar 

  11. Kong, L. et al. Half-integer level shift of vortex bound states in an iron-based superconductor. Nat. Phys. 15, 1181–1187 (2019).

    Article  Google Scholar 

  12. Mizuguchi, Y. & Takano, Y. Review of Fe chalcogenides as the simplest Fe-based superconductor. J. Phys. Soc. Jpn 79, 102001 (2010).

    Article  ADS  Google Scholar 

  13. Terao, K., Kashiwagi, T., Shizu, T., Klemm, R. A. & Kadowaki, K. Superconducting and tetragonal-to-orthorhombic transitions in single crystals of FeSe1 − xTex (0 ≤ x ≤ 0.61). Phys. Rev. B 100, 224516 (2019).

    Article  ADS  Google Scholar 

  14. Kuo, H.-H., Chu, J.-H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science 352, 958–962 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  15. Chu, J.-H. et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science 329, 824–826 (2010).

    Article  ADS  Google Scholar 

  16. Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).

    Article  ADS  Google Scholar 

  17. Yi, M., Zhang, Y., Shen, Z.-X. & Lu, D. Role of the orbital degree of freedom in iron-based superconductors. npj Quantum Mater. 2, 57 (2017).

    Article  ADS  Google Scholar 

  18. Rosenthal, E. P. et al. Visualization of electron nematicity and unidirectional antiferroic fluctuations at high temperatures in NaFeAs. Nat. Phys. 10, 225–232 (2014).

    Article  Google Scholar 

  19. Chuang, T.-M. et al. Nematic electronic structure in the ‘parent’ state of the iron-based superconductor Ca(Fe1 – xCox)2As2. Science 327, 181–184 (2010).

    Article  ADS  Google Scholar 

  20. Kostin, A. et al. Imaging orbital-selective quasiparticles in the Hund’s metal state of FeSe. Nat. Mater. 17, 869–874 (2018).

    Article  ADS  Google Scholar 

  21. Song, C.-L. et al. Direct observation of nodes and twofold symmetry in FeSe superconductor. Science 332, 1410–1413 (2011).

    Article  ADS  Google Scholar 

  22. Hanaguri, T. et al. Two distinct superconducting pairing states divided by the nematic end point in FeSe1 – xSx. Sci. Adv. 4, eaar6419 (2018).

    Article  ADS  Google Scholar 

  23. Licciardello, S. et al. Electrical resistivity across a nematic quantum critical point. Nature 567, 213–217 (2019).

    Article  ADS  Google Scholar 

  24. Zhou, R. et al. Quantum criticality in electron-doped BaFe2 − xNixAs2. Nat. Commun. 4, 2265 (2013).

    Article  ADS  Google Scholar 

  25. Yim, C. M. et al. Discovery of a strain-stabilised smectic electronic order in LiFeAs. Nat. Commun. 9, 2602 (2018).

    Article  ADS  Google Scholar 

  26. Wang, P. S. et al. Robust short-range-ordered nematicity in FeSe evidenced by high-pressure NMR. Phys. Rev. B 96, 094528 (2017).

    Article  ADS  Google Scholar 

  27. Reiss, P. et al. Quenched nematic criticality and two superconducting domes in an iron-based superconductor. Nat. Phys. 16, 89–94 (2020).

    Article  Google Scholar 

  28. Miao, H. et al. Isotropic superconducting gaps with enhanced pairing on electron Fermi surfaces in FeTe0.55Se0.45. Phys. Rev. B 85, 094506 (2012).

    Article  ADS  Google Scholar 

  29. Yi, M. et al. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides. Nat. Commun. 6, 7777 (2015).

    Article  ADS  Google Scholar 

  30. Rinott, S. et al. Tuning across the BCS-BEC crossover in the multiband superconductor Fe1 + ySexTe1 − x : an angle-resolved photoemission study. Sci. Adv. 3, e1602372 (2017).

    Article  ADS  Google Scholar 

  31. Dong, C. et al. Revised phase diagram for the FeTe1 − xSex system with fewer excess Fe atoms. Phys. Rev. B 84, 224506 (2011).

    Article  ADS  Google Scholar 

  32. Sun, Y., Shi, Z. & Tamegai, T. Review of annealing effects and superconductivity in Fe1 + yTe1 − xSex superconductors. Supercond. Sci. Technol. 32, 103001 (2019).

    Article  ADS  Google Scholar 

  33. Dong, L., Zhao, H., Zeljkovic, I., Wilson, S. D. & Harter, J. W. Bulk superconductivity in FeTe1 − xSex via physicochemical pumping of excess iron. Phys. Rev. Mater. 3, 114801 (2019).

    Article  Google Scholar 

  34. Zeljkovic, I. et al. Strain engineering Dirac surface states in heteroepitaxial topological crystalline insulator thin films. Nat. Nanotechnol. 10, 849–853 (2015).

    Article  ADS  Google Scholar 

  35. Gao, S. et al. Atomic-scale strain manipulation of a charge density wave. Proc. Natl Acad. Sci. USA 115, 6986–6990 (2018).

    Article  ADS  Google Scholar 

  36. Wahl, P., Singh, U. R., Tsurkan, V. & Loidl, A. Nanoscale electronic inhomogeneity in FeSe0.4Te0.6 revealed through unsupervised machine learning. Phys. Rev. B 101, 115112 (2020).

    Article  ADS  Google Scholar 

  37. Singh, U. R. et al. Spatial inhomogeneity of the superconducting gap and order parameter in FeSe0.4Te0.6. Phys. Rev. B 88, 155124 (2013).

    Article  ADS  Google Scholar 

  38. Malinowski, P. et al. Suppression of superconductivity by anisotropic strain near a nematic quantum critical point. Nat. Phys. 16, 1189–1193 (2020).

    Article  Google Scholar 

  39. Lederer, S., Schattner, Y., Berg, E. & Kivelson, S. A. Enhancement of superconductivity near a nematic quantum critical point. Phys. Rev. Lett. 114, 097001 (2015).

    Article  ADS  Google Scholar 

Download references


I.Z. gratefully acknowledges support from Army Research Office grant W911NF-17-1-0399 (STM experiments) and National Science Foundation grant NSF-DMR-1654041 (strain analysis). The work at Brookhaven was supported by the Office of Basic Energy Sciences, US Department of Energy (DOE) under contract DE-SC0012704. Support was provided via the UC Santa Barbara NSF Quantum Foundry funded under the Q-AMASE-i initiative under award DMR-1906325 (S.D.W. and J.H.). L.D. was supported by the Materials Research Science and Engineering Centers (MRSEC) programme of the National Science Foundation through grant no. DMR-1720256 (Seed Program). Z.W. acknowledges support from US Department of Energy, Basic Energy Sciences grant DE-FG02-99ER45747. The work in Zhejiang University is supported by the National Key R&D Program of China under grant 2016YFA0300402 and the National Natural Science Foundation of China (grants NSFC-12074335 and 11974095).

Author information

Authors and Affiliations



STM experiments were carried out by H.Z. and H.L. L.D., B.X., J.S. and R.Z. grew the Fe(Te,Se) single crystals, supervised by M.F., G.G., J.H. and S.D.W. H.Z. and H.L. analysed the STM data with guidance from I.Z. Z.W. provided theoretical input on the interpretation of STM data. I.Z., Z.W., H.Z. and S.D.W. wrote the manuscript with input from all the authors. I.Z. supervised the project.

Corresponding author

Correspondence to Ilija Zeljkovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Milan Allan, Michael Lawler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions 1–8, Tables 1 and 2, Figs. 1–16 and references 1–5.

Source data

Source Data Fig. 3

Raw data for Fig. 3b,c,g,h,l,m.

Source Data Fig. 4

Raw data for Fig. 4f.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Li, H., Dong, L. et al. Nematic transition and nanoscale suppression of superconductivity in Fe(Te,Se). Nat. Phys. 17, 903–908 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing