Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unusual high-field metal in a Kondo insulator

Abstract

Strong electronic interactions in condensed-matter systems often lead to unusual quantum phases. One such phase occurs in the Kondo insulator YbB12, the insulating state of which exhibits phenomena that are characteristic of metals, such as magnetic quantum oscillations1, a gapless fermionic contribution to heat capacity2,3 and itinerant-fermion thermal transport3. To understand these phenomena, it is informative to study their evolution as the energy gap of the Kondo insulator state is closed by a large magnetic field. Here we show that clear quantum oscillations are observed in the resulting high-field metallic state in YbB12; this is despite it possessing relatively high resistivity, large effective masses and huge Kadowaki–Woods ratio, a combination that normally precludes quantum oscillations. Both quantum oscillation frequency and cyclotron mass display a strong field dependence. By tracking the Fermi surface area, we conclude that the same quasiparticle band gives rise to quantum oscillations in both insulating and metallic states. These data are understood most simply by using a two-fluid picture in which neutral quasiparticles—contributing little or nothing to charge transport—coexist with charged fermions. Our observations of the complex field-dependent behaviour of the fermion ensemble inhabiting YbB12 provide strong constraints for existing theoretical models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The SdH effect in YbB12.
Fig. 2: Field-dependent FS in the metallic state.
Fig. 3: Temperature dependence of resistivity in the metallic state.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Xiang, Z. et al. Quantum oscillations of electrical resistivity in an insulator. Science 362, 65–69 (2018).

    Article  ADS  Google Scholar 

  2. Terashima, T. T. et al. Magnetic-field-induced Kondo metal realized in YbB12. Phys. Rev. Lett. 120, 257206 (2018).

    Article  ADS  Google Scholar 

  3. Sato, Y. et al. Unconventional thermal metallic state of charge-neutral fermions in an insulator. Nat. Phys. 15, 954–959 (2019).

    Article  Google Scholar 

  4. Cooley, J. C., Aronson, M. C., Fisk, Z. & Canfield, P. C. SmB6: Kondo insulator or exotic metal? Phys. Rev. Lett. 74, 1629 (1995).

    Article  ADS  Google Scholar 

  5. Kasaya, M., Iga, F., Takigawa, M. & Kasuya, T. Mixed valence properties of YbB12. J. Magn. Magn. Mater. 47–48, 429–435 (1985).

    Article  ADS  Google Scholar 

  6. Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).

    Article  ADS  Google Scholar 

  7. Li, G. et al. Two-dimensional Fermi surfaces in Kondo insulator SmB6. Science 346, 1208–1212 (2014).

    Article  ADS  Google Scholar 

  8. Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287–290 (2015).

    Article  ADS  Google Scholar 

  9. Hartstein, M. et al. Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6. Nat. Phys. 14, 166–172 (2018).

    Article  Google Scholar 

  10. Xiang, Z. et al. Bulk rotational symmetry breaking in Kondo insulator SmB6. Phys. Rev. X 7, 031054 (2017).

    Google Scholar 

  11. Thomas, S. M. et al. Quantum oscillations in flux-grown SmB6 with embedded aluminum. Phys. Rev. Lett. 122, 166401 (2019).

    Article  ADS  Google Scholar 

  12. Xu, Y. et al. Bulk Fermi surface of charge-neutral excitations in SmB6 or not: a heat-transport study. Phys. Rev. Lett. 116, 246403 (2016).

    Article  ADS  Google Scholar 

  13. Boulanger, M.-E. et al. Field-dependent heat transport in the Kondo insulator SmB6: phonons scattered by magnetic impurities. Phys. Rev. B 97, 245141 (2018).

    Article  ADS  Google Scholar 

  14. Knolle, J. & Cooper, N. R. Excitons in topological Kondo insulators: theory of thermodynamic and transport anomalies in SmB6. Phys. Rev. Lett. 118, 096604 (2017).

    Article  ADS  Google Scholar 

  15. Erten, O., Chang, P.-Y., Coleman, P. & Tsvelik, A. M. Skyrme insulators: insulators at the brink of superconductivity. Phys. Rev. Lett. 119, 057603 (2017).

    Article  ADS  Google Scholar 

  16. Varma, C. M. et al. Majoranas in mixed-valence insulators. Phys. Rev. B 102, 155145 (2020).

    Article  ADS  Google Scholar 

  17. Chowdhury, D., Sodemann, I. & Senthil, T. Mixed-valence insulators with neutral Fermi surfaces. Nat. Commun. 9, 1766 (2018).

    Article  ADS  Google Scholar 

  18. Sodemann, I., Chowdhury, D. & Senthil, T. Quantum oscillations in insulators with neutral Fermi surfaces. Phys. Rev. B 97, 045152 (2018).

    Article  ADS  Google Scholar 

  19. Shen, H. & Fu, L. Quantum oscillation from in-gap states and non-Hermitian Landau level problem. Phys. Rev. Lett. 121, 026403 (2018).

    Article  ADS  Google Scholar 

  20. Okawa, M. et al. Hybridization gap formation in the Kondo insulator YbB12 observed using time-resolved photoemission spectroscopy. Phys. Rev. B 92, 161108(R) (2015).

    Article  ADS  Google Scholar 

  21. Sugiyama, K., Iga, F., Kasaya, M., Kasuya, T. & Date, M. Field-induced metallic state in YbB12 under high magnetic field. J. Phys. Soc. Jpn 57, 3946–3953 (1988).

    Article  ADS  Google Scholar 

  22. Terashima, T. T. et al. Magnetization process of the Kondo insulator YbB12 in ultrahigh magnetic fields. J. Phys. Soc. Jpn 86, 054710 (2017).

    Article  ADS  Google Scholar 

  23. Ohashi, T., Koga, A., Suga, S. & Kawakami, N. Field-induced phase transitions in a Kondo insulator. Phys. Rev. B 70, 245104 (2004).

    Article  ADS  Google Scholar 

  24. Ghannadzadeh, S. et al. Measurement of magnetic susceptibility in pulsed magnetic fields using a proximity detector oscillator. Rev. Sci. Instrum. 82, 113902 (2011).

    Article  ADS  Google Scholar 

  25. Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).

    Book  Google Scholar 

  26. van Ruitenbeek, J. M. et al. A de Haas-van Alphen study of the field dependence of the Fermi surface in ZrZn2. J. Phys. F 12, 2919–2928 (1982).

    Article  ADS  Google Scholar 

  27. Götze, K. et al. Unusual phase boundary of the magnetic-field-tuned valence transition in CeOs4Sb12. Phys. Rev. B 101, 075102 (2020).

    Article  ADS  Google Scholar 

  28. Yang, Y.-F. & Pines, D. Emergent states in heavy-electron materials. Proc. Natl Acad. Sci. USA 109, E3060–E3066 (2012).

    Article  Google Scholar 

  29. Tsujii, N., Kontani, H. & Yoshimura, K. Universality in heavy fermion systems with general degeneracy. Phys. Rev. Lett. 94, 057201 (2005).

    Article  ADS  Google Scholar 

  30. Matsumoto, Y., Kuga, K., Tomita, T., Karaki, Y. & Nakatsuji, S. Anisotropic heavy-Fermi-liquid formation in valence-fluctuating α-YbAlB4. Phys. Rev. B 84, 125126 (2011).

    Article  ADS  Google Scholar 

  31. Harrison, N. et al. Unconventional quantum fluid at high magnetic fields in the marginal charge-density-wave system α − (BEDT-TTF)2MHg(SCN)4 (M = K and Rb). Phys. Rev. B 69, 165103 (2004).

    Article  ADS  Google Scholar 

  32. Singleton, J., Nicholas, R. J., Nasir, F. & Sarkar, C. K. Quantum transport in accumulation layers on Cd0.2Hg0.8Te. J. Phys. C 19, 35 (1986).

    Article  ADS  Google Scholar 

  33. Quader, K. F., Bedell, K. S. & Brown, G. E. Strongly interacting fermions. Phys. Rev. B 36, 156–167 (1987).

    Article  ADS  Google Scholar 

  34. Senthil, T., Sachdev, S. & Vojta, M. Fractionalized Fermi liquids. Phys. Rev. Lett. 90, 216403 (2003).

    Article  ADS  Google Scholar 

  35. Senthil, T., Vojta, M. & Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points. Phys. Rev. B 69, 035111 (2004).

    Article  ADS  Google Scholar 

  36. Patel, A. A., McGreevy, J., Arovas, D. P. & Sachdev, S. Magnetotransport in a model of a disordered strange metal. Phys. Rev. X 8, 021049 (2018).

    Google Scholar 

  37. Leadley, D. R., Nicholas, R. J., Foxon, C. T. & Harris, J. J. Measurements of the effective mass and scattering times of composite fermions from magnetotransport analysis. Phys. Rev. Lett. 72, 1906 (1994).

    Article  ADS  Google Scholar 

  38. Nagaosa, N. Emergent electromagnetism in condensed matter. Proc. Jpn Acad. Ser. B 95, 278–289 (2019).

    Article  Google Scholar 

  39. Jacko, A. C., Fjærestad, J. O. & Powell, B. J. A unified explanation of the Kadowaki–Woods ratio in strongly correlated metals. Nat. Phys. 9, 422–425 (2009).

    Article  Google Scholar 

  40. Hussey, N. E. Non-generality of the Kadowaki–Woods ratio in correlated oxides. J. Phys. Soc. Jpn 74, 1107–1110 (2005).

    Article  ADS  Google Scholar 

  41. Iga, F., Shimizu, N. & Takabatake, T. Single crystal growth and physical properties of Kondo insulator YbB12. J. Magn. Magn. Mater. 177–181, 337–338 (1998).

    Article  ADS  Google Scholar 

  42. Daou, R. et al. High resolution magnetostriction measurements in pulsed magnetic fields using fiber Bragg gratings. Rev. Sci. Instrum. 81, 033909 (2010).

    Article  ADS  Google Scholar 

  43. Jaime, M. et al. Fiber Bragg grating dilatometry in extreme magnetic field and cryogenic conditions. Sensors 17, 2572 (2017).

    Article  ADS  Google Scholar 

  44. Mushnikov, N. V. & Goto, T. High-field magnetostriction of the valence-fluctuating compound YbInCu4. Phys. Rev. B 70, 054411 (2004).

    Article  ADS  Google Scholar 

  45. Matsuda, Y. H., Kakita, Y. & Iga, F. The temperature dependence of the magnetization process of the Kondo insulator YbB12. Crystals 10, 26 (2020).

    Article  Google Scholar 

  46. Yoshimura, K. et al. Anomalous high-field magnetization and negative forced volume magnetostriction in Yb1–xMxCu2 (M = In and Ag)—evidence for valence change in high magnetic fields. Phys. Rev. Lett. 60, 851 (1988).

    Article  ADS  Google Scholar 

  47. Zieglowski, J., Häfner, H. U. & Wohlleben, D. Volume magnetostriction of rare-earth metals with unstable 4f shells. Phys. Rev. Lett. 56, 193 (1986).

    Article  ADS  Google Scholar 

  48. Goddard, P. A. et al. Separation of energy scales in the kagome antiferromagnet TmAgGe: a magnetic-field-orientation study up to 55 T. Phys. Rev. B 75, 094426 (2007).

    Article  ADS  Google Scholar 

  49. Goddard, P. A. et al. Experimentally determining the exchange parameters of quasi-two-dimensional Heisenberg magnets. New J. Phys. 10, 083025 (2008).

    Article  ADS  Google Scholar 

  50. Altarawneh, M. M., Mielke, C. H. & Brooks, J. S. Proximity detector circuits: an alternative to tunnel diode oscillators for contactless measurements in pulsed magnetic field environments. Rev. Sci. Instrum. 80, 066104 (2009).

    Article  ADS  Google Scholar 

  51. Pippard, A. B. The Dynamics of Conduction Electrons (Blackie & Son, 1965).

    Google Scholar 

  52. Ye, L., Checkelsky, J. G., Kagawa, F. & Tokura, Y. Transport signatures of Fermi surface topology change in BiTeI. Phys. Rev. B 91, 201104(R) (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank L. Jiao, L. Fu, S. Todadri, T. Lancaster, P. Goddard, H. Kontani, H. Shishido and R. Peters for discussions. This work is supported by the National Science Foundation under Award No. DMR-1707620 and No. DMR-2004288 (transport measurements), by the Department of Energy under Award No. DE-SC0020184 (magnetization measurements), by the Office of Naval Research through DURIP Award No. N00014-17-1-2357 (instrumentation) and by Grants-in-Aid for Scientific Research (KAKENHI) (Nos. JP15H02106, JP18H01177, JP18H01178, JP18H01180, JP18H05227, JP19H00649, JP20H02600 and JP20H05159) and on Innovative Areas ‘Quantum Liquid Crystals’ (No. JP19H05824) from the Japan Society for the Promotion of Science (JSPS) and JST CREST (JPMJCR19T5). A major portion of this work was performed at the National High Magnetic Field Laboratory (NHMFL), which is supported by National Science Foundation Cooperative Agreement No. DMR-1644779 and the Department of Energy (DOE). J.S. and M.J. thank the DOE for support from the BES program ‘Science in 100 T’. Development of the 75 T duplex magnet at the NHMFL Pulsed Field Facility at Los Alamos National Laboratory was supported by the National Science Foundation through the NHMFL. The experiment in NHMFL is funded in part by a QuantEmX grant from ICAM and the Gordon and Betty Moore Foundation through Grant GBMF5305 to Z.X., T.A., L.C., C.T. and L.L. We are grateful for the assistance of Y. Lai, D. Nguyen, X. Ding, V. Zapf, L. Winter, R. McDonald and J. Betts of the NHMFL.

Author information

Authors and Affiliations

Authors

Contributions

F.I. grew the high-quality single-crystalline samples. Z.X., L.C., K.-W.C., C.T., Y.S., T.A., H.L., F.B., J.S. and L.L. performed the pulsed-field PDO and resistivity measurements. Z.X., T.A. and J.S. performed the pulsed-field magnetometry measurements. L.C., C.T. and M.J. performed the pulsed-field magnetostriction measurements. Z.X., K.-W.C., Y.K., Y.M., J.S. and L.L. analysed the data. Z.X., Y.M., J.S. and L.L. prepared the manuscript.

Corresponding authors

Correspondence to Ziji Xiang, John Singleton or Lu Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The magnetostriction and magnetization of YbB12.

a, The experimental arrangements for magnetostriction measurements. An optical fiber containing fiber Bragg gratings serves as the strain gauge. The single-crystal sample of YbB12 with dimensions 2.3 × 1.0 × 0.2 mm3 is glued to the fiber Bragg grating section of the fiber. A 60 T pulsed magnetic field is applied along the direction of the optical fiber. The longest edge of the single crystal is parallel to the crystallographic a axis, therefore in this arrangement the parallel strain ΔLH[100] is measured. b, Field dependence of the linear magnetostriction ΔL/L along the a axis at different temperatures ranging from 10 K to 40 K. The inset shows the high-temperature magnetostriction curves in a logarithmic scale. The dashed line is a power-law field dependence with an exponent n = 3.5. c, The linear magnetostriction measured at temperatures below 5 K. d, Magnetization of the same YbB12 single crystal measured at T = 0.64 K using a compensated-coil susceptometer (see Methods). Field was applied along the [100] direction. The gray dashed line indicates the consistency of the step-like decrease in the linear magnetostriction in c and the abrupt increase of magnetization in d at the field-induced I-M transition, μ0HI−M = 46.3 T.

Extended Data Fig. 2 The angle, temperature and field dependence of the SdH effect.

a, Oscillatory component of the PDO frequency, Δf, obtained after a 4th-order polynomial background subtraction from raw data at different tilt angles. The SdH effect is weaker in the field downsweeps (short-dashed lines) than in the upsweeps (solid lines), probably due to sample heating. b, Δf taken at θ = 10. 9 at different temperatures. The field-dependent cyclotron energies shown in Fig. 1d are obtained by fitting the frequency difference between adjacent peaks and valleys to the LK formula. Horizontal bars denote the peaks and valleys used for the fits in Fig. 1d. The inset displays the interval between spin-up and spin-down SdH peaks in inverse magnetic field, as a function of μ0H. If the effective mass and the g-factor are field independent, this value is expected be a constant (see Methods). c, PDO frequency measured up to 75 T in the Duplex Magnet; only the lowest pair of Landau levels, that is, N = 2±, are shown. The inset shows the small amplitude differences of N = 2± levels between T = 0.57 K and 1.51 K, suggesting a nondiverging quasiparticle mass up to at least 72 T. d, MR measured by the pulsed current technique (see Methods) in the Duplex magnet. A downward kink is observed at 68 T and coincides with the N = 2 sublevel. This slope change may imply a crossover to an unknown high-field state in YbB12.

Extended Data Fig. 3 The pulsed current technique.

a, A schematic diagram of the pulsed current technique used for measuring the MR of YbB12 samples in the KM state (see Methods). The current pulse is triggered with a precisely controlled time delay after the start of the magnetic field pulse. In the measurements we adjust the value of Rs to maintain the excitation amplitude 2-3 mA at different temperatures. b, The longitudinal MR of YbB12 in the KM state below 10 K, measured with both field and current applied along the crystallographic [100] direction. The data taken at 1.44 K, 2.00 K and 3.09 K are measured with the sample in 4He liquid, whereas other curves are measured in 3He liquid or vapour. The vertical dashed line marks the 55 T field at which we extract resistivity values from the upsweeps for the temperature dependence analysis (see Methods).

Extended Data Fig. 4 X-Ray diffraction.

X-ray diffraction pattern of the YbB12 single crystal measured with Cu Kα radiation. Only the (00l) series Bragg peaks are observed. The lattice parameter is calculated to be a = 7.47Å.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1 and 2 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Z., Chen, L., Chen, KW. et al. Unusual high-field metal in a Kondo insulator. Nat. Phys. 17, 788–793 (2021). https://doi.org/10.1038/s41567-021-01216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01216-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing