Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Time–information uncertainty relations in thermodynamics

Abstract

Physical systems powering motion and creating structure in a fixed amount of time dissipate energy and produce entropy. Whether living, synthetic or engineered, systems performing these dynamic functions must balance dissipation and speed. Here, we show that rates of energy and entropy exchange are subject to a speed limit—a time–information uncertainty relation—imposed by the rates of change in the information content of the system. This uncertainty relation bounds the time that elapses before the change in a thermodynamic quantity has the same magnitude as its s.d. From this general bound, we establish a family of speed limits for heat, dissipated/chemical work and entropy depending on the experimental constraints on the system and its environment. In all of these inequalities, the timescale of transient dynamical fluctuations is universally bounded by the Fisher information. Moreover, they all have a mathematical form that mirrors the Mandelstam–Tamm version of the time–energy uncertainty relation in quantum mechanics. These bounds on the speed of arbitrary observables apply to transient systems away from thermodynamic equilibrium, independent of the physical constraints on the stochastic dynamics or their function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Speed limit from the statistical distinguishability of thermodynamic observables.
Fig. 2: Illustration of time–information uncertainty relation and speed limit for a model of driven assembly of monomeric units.

Similar content being viewed by others

Data availability

The data sets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The codes generated and used during the current study are available from the corresponding author on reasonable request.

References

  1. Callen, H. B. Thermodynamics and an Introduction to Thermostatistics 2nd edn (Wiley, 1985).

  2. Mandelstam, L. & Tamm, I. The uncertainty relation between energy and time in non-relativistic quantum mechanics. J. Phys. USSR 9, 249–254 (1945).

    MathSciNet  MATH  Google Scholar 

  3. Margolus, N. & Levitin, L. B. The maximum speed of dynamical evolution. Physica D 120, 188–195 (1998).

    Article  ADS  Google Scholar 

  4. Pietzonka, P. & Seifert, U. Universal trade-off between power, efficiency, and constancy in steady-state heat engines. Phys. Rev. Lett. 120, 190602 (2018).

    Article  ADS  Google Scholar 

  5. Gingrich, T. R., Horowitz, J. M., Perunov, N. & England, J. L. Dissipation bounds all steady-state current fluctuations. Phys. Rev. Lett. 116, 120601 (2016).

    Article  ADS  Google Scholar 

  6. Nicholson, S. B., del Campo, A. & Green, J. R. Nonequilibrium uncertainty principle from information geometry. Phys. Rev. E 98, 032106 (2018).

    Article  ADS  Google Scholar 

  7. Barato, A. C., Chetrite, R., Faggionato, A. & Gabrielli, D. Bounds on current fluctuations in periodically driven systems. New J. Phys. 20, 103023 (2018).

    Article  Google Scholar 

  8. Dechant, A. Multidimensional thermodynamic uncertainty relations. J. Phys. A 52, 035001 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  9. Uffink, J. & van Lith, J. Thermodynamic uncertainty relations. Found. Phys. 29, 655–692 (1999).

    Article  MathSciNet  Google Scholar 

  10. Schlögl, F. Thermodynamic uncertainty relation. J. Phys. Chem. Solids 49, 679–683 (1988).

    Article  ADS  Google Scholar 

  11. Barato, A. C. & Seifert, U. Thermodynamic uncertainty relation for biomolecular processes. Phys. Rev. Lett. 114, 158101 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  12. Pietzonka, P., Ritort, F. & Seifert, U. Finite-time generalization of the thermodynamic uncertainty relation. Phys. Rev. E 96, 012101 (2017).

    Article  ADS  Google Scholar 

  13. Maes, C. Frenetic bounds on the entropy production. Phys. Rev. Lett. 119, 160601 (2017).

    Article  ADS  Google Scholar 

  14. Jarzynski, C. Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale. Annu. Rev. Condens. Matter Phys. 2, 329–351 (2011).

    Article  ADS  Google Scholar 

  15. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).

    Article  ADS  Google Scholar 

  16. Van den Broeck, C. & Esposito, M. Ensemble and trajectory thermodynamics: a brief introduction. Physica A 418, 6–16 (2015).

    Article  ADS  Google Scholar 

  17. Boyd, A. B. & Crutchfield, D. M. J. P. Identifying functional thermodynamics in autonomous Maxwellian ratchets. New J. Phys. 18, 023049 (2016).

    Article  ADS  Google Scholar 

  18. Sagawa, T. & Ueda, M. in Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond (eds Klages, R. et al.) 181–211 (Wiley-VCH, 2013).

  19. Hasegawa, Y. & Vu, T. V. Uncertainty relations in stochastic processes: an information inequality approach. Phys. Rev. E 99, 062126 (2019).

    Article  ADS  Google Scholar 

  20. Green, J. R., Costa, A. B., Grzybowski, B. A. & Szleifer, I. Relationship between dynamical entropy and energy dissipation far from thermodynamic equilibrium. Proc. Natl Acad. Sci. USA 110, 16339–16343 (2013).

    Article  ADS  Google Scholar 

  21. Zieliński, B. & Zych, M. Generalization of the Margolus-Levitin bound. Phys. Rev. A 74, 034301 (2006).

    Article  ADS  Google Scholar 

  22. Margolus, N. The finite-state character of physical dynamics. Preprint at https://arxiv.org/abs/1109.4994 (2011).

  23. Taddei, M. M., Escher, B. M., Davidovich, L. & de Matos Filho, R. L. Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013).

    Article  ADS  Google Scholar 

  24. del Campo, A., Egusquiza, I. L., Plenio, M. B. & Huelga, S. F. Quantum speed limits in open system dynamics. Phys. Rev. Lett. 110, 050403 (2013).

    Article  ADS  Google Scholar 

  25. Deffner, S. & Lutz, E. Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013).

    Article  ADS  Google Scholar 

  26. García-Pintos, L. & del Campo, A. Quantum speed limits under continuous quantum measurements. New J. Phys. 21, 033012 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  27. Shanahan, B., Chenu, A., Margolus, N. & del Campo, A. Quantum speed limits across the quantum-to-classical transition. Phys. Rev. Lett. 120, 070401 (2018).

    Article  ADS  Google Scholar 

  28. Okuyama, M. & Ohzeki, M. Quantum speed limit is not quantum. Phys. Rev. Lett. 120, 070402 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  29. Takahashi, K. & Ohzeki, M. Conflict between fastest relaxation of a Markov process and detailed balance condition. Phys. Rev. E 93, 012129 (2016).

    Article  ADS  Google Scholar 

  30. Shiraishi, N., Funo, K. & Saito, K. Speed limit for classical stochastic processes. Phys. Rev. Lett. 121, 070601 (2018).

    Article  ADS  Google Scholar 

  31. Horowitz, J. M. & Gingrich, T. R. Thermodynamic uncertainty relations constrain non-equilibrium fluctuations. Nat. Phys. 16, 15–20 (2019).

    Article  Google Scholar 

  32. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948).

    Article  MathSciNet  Google Scholar 

  33. Reif, F. Fundamentals of Statistical and Thermal Physics (Waveland, 2009).

  34. Messiah, A. Quantum Mechanics Vol. 1 (North-Holland, 1961).

  35. Salamon, P. & Berry, S. R. Thermodynamic length and dissipated availability. Phys. Rev. Lett. 51, 1127–1130 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  36. Salamon, P., Nulton, J. D. & Berry, R. S. Length in statistical thermodynamics. J. Chem. Phys. 82, 2433–2436 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  37. Wootters, W. K. Statistical distance and Hilbert space. Phys. Rev. D 23, 357–362 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  38. Braunstein, S. L. & Caves, C. M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  39. Crooks, G. E. Measuring thermodynamic length. Phys. Rev. Lett. 99, 100602 (2007).

    Article  ADS  Google Scholar 

  40. Flynn, S. W., Zhao, H. C. & Green, J. R. Measuring disorder in irreversible decay processes. J. Chem. Phys. 141, 104107 (2014).

    Article  ADS  Google Scholar 

  41. Nichols, J. W., Flynn, S. W. & Green, J. R. Order and disorder in irreversible decay processes. J. Chem. Phys. 142, 064113 (2015).

    Article  ADS  Google Scholar 

  42. Frieden, B. R. Science from Fisher Information 2nd Ed. (Cambridge University Press, 2004).

  43. Heseltine, J. & Kim, E. Novel mapping in non-equilibrium stochastic processes. J. Phys. A 49, 175002 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  44. Kim, E., Lee, U., Heseltine, J. & Hollerbach, R. Geometric structure and geodesic in a solvable model of nonequilibrium process. Phys. Rev. E 93, 062127 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  45. Boixo, S., Flammia, S. T., Caves, C. M. & Geremia, J. Generalized limits for single-parameter quantum estimation. Phys. Rev. Lett. 98, 090401 (2007).

    Article  ADS  Google Scholar 

  46. Ito, S. & Dechant, A. Stochastic time evolution, information geometry and the Cramér-Rao bound. Phys. Rev. X 10, 021056 (2020).

  47. Casella, G. & Berger, R. L. Statistical Inference Vol. 2 (Duxbury, 2002).

  48. Cover, T. M. & Thomas, J. A. Elements of Information Theory 2nd edn (Wiley, 2006).

  49. Groot, S. R. D. & Mazur, P. Non-Equilibrium Thermodynamics Vol. 1 (Dover, 1984).

  50. Grant, J., Jack, R. L. & Whitelam, S. Analyzing mechanisms and microscopic reversibility of self-assembly. J. Chem. Phys. 135, 214505 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Science Foundation under grant no. 1856250 and the US Army Research Laboratory and the US Army Research Office under grant no. W911NF-14-1-0359. This work is further supported by the John Templeton Foundation, UMass Boston project no. P20150000029279, DoE grant no. DE-SC0019515, AFOSR MURI project ‘Scalable Certification of Quantum Computing Devices and Networks’, DoE ASCR Quantum Testbed Pathfinder programme (award no. DE-SC0019040), DoE BES QIS programme (award no. DE-SC0019449), DoE ASCR FAR-QC (award no. DE-SC0020312), NSF PFCQC programme, AFOSR, ARO MURI, ARL CDQI, and NSF PFC at JQI.

Author information

Authors and Affiliations

Authors

Contributions

S.B.N., L.P.G.P., A.dC. and J.R.G. contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Jason R. Green.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, results and discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicholson, S.B., García-Pintos, L.P., del Campo, A. et al. Time–information uncertainty relations in thermodynamics. Nat. Phys. 16, 1211–1215 (2020). https://doi.org/10.1038/s41567-020-0981-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-0981-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing