Thermodynamics of hot strong-interaction matter from ultrarelativistic nuclear collisions


Collisions between heavy atomic nuclei at ultrarelativistic energies are carried out at particle colliders to produce the quark–gluon plasma, a state of matter where quarks and gluons are not confined into hadrons, and colour degrees of freedom are liberated. This state is thought to be produced as a transient phenomenon before it fragments into thousands of particles that reach the particle detectors. Despite two decades of investigations, one of the big open challenges1 is to obtain an experimental determination of the temperature reached in a heavy-ion collision, and a simultaneous determination of another thermodynamic quantity, such as the entropy density, that would give access to the number of degrees of freedom. Here, we obtain such a determination, utilizing state-of-the-art hydrodynamic simulations2. We define an effective temperature, averaged over the spacetime evolution of the medium. Then, using experimental data, we determine this temperature and the corresponding entropy density and speed of sound in the matter created in lead–lead collisions at the Large Hadron Collider. Our results agree with first-principles calculations from lattice quantum chromodynamics3 and confirm that a deconfined phase of matter is indeed produced.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic representation of a 208Pb–208Pb collision at the LHC.
Fig. 2: Results from hydrodynamic simulations of Pb + Pb collisions.
Fig. 3: Estimate of the theoretical uncertainty on the effective temperature.
Fig. 4: Thermodynamic properties of hot strong-interaction matter.

Data availability

The data represented in Figs. 2 and 3 are available as Source Data. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The hydrodynamic code used in this article is publicly available at The code used to generate initial conditions for hydrodynamics is publicly available at


  1. 1.

    Busza, W., Rajagopal, K. & van der Schee, W. Heavy ion collisions: the big picture, and the big questions. Ann. Rev. Nucl. Part. Sci. 68, 339–376 (2018).

    ADS  Article  Google Scholar 

  2. 2.

    Romatschke P. & Romatschke U. Relativistic Fluid Dynamics In and Out of Equilibrium (Cambridge Univ. Press, 2019).

  3. 3.

    Borsanyi, S. et al. Full result for the QCD equation of state with 2 + 1 flavors. Phys. Lett. B 730, 99–104 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    Schlichting, S. & Teaney, D. The first fm/c of heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 69, 447–476 (2019).

    ADS  Article  Google Scholar 

  5. 5.

    Broniowski, W. & Florkowski, W. Explanation of the RHIC p spectra in a thermal model with expansion. Phys. Rev. Lett. 87, 272302 (2001).

    ADS  Article  Google Scholar 

  6. 6.

    Alba, P. et al. Effect of the QCD equation of state and strange hadronic resonances on multiparticle correlations in heavy ion collisions. Phys. Rev. C 98, 034909 (2018).

    ADS  Article  Google Scholar 

  7. 7.

    Mazeliauskas, A., Floerchinger, S., Grossi, E. & Teaney, D. Fast resonance decays in nuclear collisions. Eur. Phys. J. C 79, 284 (2019).

    ADS  Article  Google Scholar 

  8. 8.

    Van Hove, L. et al. Multiplicity dependence of p t spectrum as a possible signal for a phase transition in hadronic collisions. Phys. Lett. B 118, 138–140 (1982).

    ADS  Article  Google Scholar 

  9. 9.

    Campanini, R. & Ferri, G. Experimental equation of state in proton–proton and proton–antiproton collisions and phase transition to quark gluon plasma. Phys. Lett. B 703, 237–245 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    McLerran, L. D., Kataja, M., Ruuskanen, P. V. & von Gersdorff, H. Studies of the hydrodynamical evolution of matter produced in fluctuations in p anti-p collisions and in ultrarelativistic nuclear collisions. 2. Transverse momentum distributions. Phys. Rev. D 34, 2755–2763 (1986).

    ADS  Article  Google Scholar 

  11. 11.

    Blaizot, J. P. & Ollitrault, J. Y. Equation of state and hydrodynamics of quark gluon plasmas. Phys. Lett. B 191, 21–26 (1987).

    ADS  Article  Google Scholar 

  12. 12.

    Ollitrault, J. Y. et al. Relativistic hydrodynamics for heavy-ion collisions. Eur. J. Phys. 29, 275–302 (2008).

    Article  Google Scholar 

  13. 13.

    Bernhard, J. E., Moreland, J. S., Bass, S. A., Liu, J. & Heinz, U. Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark–gluon plasma medium. Phys. Rev. C 94, 024907 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Huovinen, P. & Petreczky, P. QCD equation of state and hadron resonance gas. Nucl. Phys. A 837, 26–53 (2010).

    ADS  Article  Google Scholar 

  15. 15.

    Monnai, A. & Hirano, T. Effects of bulk viscosity at freezeout. Phys. Rev. C 80, 054906 (2009).

    ADS  Article  Google Scholar 

  16. 16.

    ALICE Collaboration Transverse momentum spectra and nuclear modification factors of charged particles in Xe–Xe collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 5.44 TeV .Phys. Lett. B 788, 166–179 (2019).

    ADS  Article  Google Scholar 

  17. 17.

    Andronic, A., Braun-Munzinger, P., Redlich, K. & Stachel, J. Decoding the phase structure of QCD via particle production at high energy. Nature 561, 321–330 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    Hanus, P., Mazeliauskas, A. & Reygers, K. Entropy production in pp and Pb–Pb collisions at energies available at the CERN Large Hadron Collider. Phys. Rev. C 100, 064903 (2019).

    ADS  Article  Google Scholar 

  19. 19.

    ALICE Collaboration Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb–Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 5.02 TeV .Phys. Rev. Lett. 116, 222302 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    ALICE Collaboration Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb–Pb collisions at \(\sqrt{{s}_{NN}}=2.76\) TeV. Phys. Rev. Lett. 106, 032301 (2011).

    ADS  Article  Google Scholar 

  21. 21.

    ALICE Collaboration Transverse momentum spectra and nuclear modification factors of charged particles in pp, p–Pb and Pb–Pb collisions at the LHC. J. High Energy Phys. 1811, 013 (2018).

    ADS  Google Scholar 

  22. 22.

    Pratt, S., Sangaline, E., Sorensen, P. & Wang, H. Constraining the equation of state of super-hadronic matter from heavy-ion collisions. Phys. Rev. Lett. 114, 202301 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    PHENIX Collaboration Spectra and ratios of identified particles in Au+Au and d+Au collisions at \(\sqrt{{s}_{NN}}=200\) GeV. Phys. Rev. C 88, 024906 (2013).

    Article  Google Scholar 

  24. 24.

    Rogly, R., Giacalone, G. & Ollitrault, J. Y. Geometric scaling in symmetric nucleus–nucleus collisions. Nucl. Phys. A 982, 355–358 (2019).

    ADS  Article  Google Scholar 

  25. 25.

    Giacalone, G., Mazeliauskas, A. & Schlichting, S. Hydrodynamic attractors, initial state energy and particle production in relativistic nuclear collisions. Phys. Rev. Lett. 123, 262301 (2019).

    ADS  Article  Google Scholar 

  26. 26.

    PHOBOS Collaboration Centrality dependence of the charged particle multiplicity near mid-rapidity in Au + Au collisions at \(\sqrt{s}\) (NN) = 130-GeV and 200-GeV. Phys. Rev. C 65, 061901 (2002).

    Article  Google Scholar 

  27. 27.

    Bjorken, J. D. et al. Highly relativistic nucleus–nucleus collisions: the central rapidity region. Phys. Rev. D 27, 140–151 (1983).

    ADS  Article  Google Scholar 

  28. 28.

    Kolb P. F. & Heinz U. W. in Quark-Gluon Plasma 3 (eds Hwa, R. C. & Wang X.-N.) 634–714 (World Scientific, 2004).

  29. 29.

    Vredevoogd, J. & Pratt, S. Universal flow in the first stage of relativistic heavy ion collisions. Phys. Rev. C 79, 044915 (2009).

    ADS  Article  Google Scholar 

  30. 30.

    van der Schee, W., Romatschke, P. & Pratt, S. Fully dynamical simulation of central nuclear collisions. Phys. Rev. Lett. 111, 222302 (2013).

    ADS  Article  Google Scholar 

  31. 31.

    Keegan, L., Kurkela, A., Mazeliauskas, A. & Teaney, D. Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution. J. High Energy Phys. 1608, 171 (2016).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Eskola, K. J., Kajantie, K. & Tuominen, K. Centrality dependence of multiplicities in ultrarelativistic nuclear collisions. Phys. Lett. B 497, 39–43 (2001).

    ADS  Article  Google Scholar 

  33. 33.

    Kolb, P. F., Heinz, U. W., Huovinen, P., Eskola, K. J. & Tuominen, K. Centrality dependence of multiplicity, transverse energy, and elliptic flow from hydrodynamics. Nucl. Phys. A 696, 197–215 (2001).

    ADS  Article  Google Scholar 

  34. 34.

    Miller, M. L., Reygers, K., Sanders, S. J. & Steinberg, P. Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 57, 205–243 (2007).

    ADS  Article  Google Scholar 

  35. 35.

    ALICE Collaboration Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe–Xe collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 5.44TeV . Phys. Lett. B 790, 35–48 (2019).

    ADS  Article  Google Scholar 

  36. 36.

    ALICE Collaboration Centrality determination of Pb–Pb collisions at \(\sqrt{{s}_{NN}}\) = 2.76 TeV with ALICE. Phys. Rev. C 88, 044909 (2013).

    ADS  Article  Google Scholar 

  37. 37.

    Moreland, J. S., Bernhard, J. E. & Bass, S. A. Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions. Phys. Rev. C 92, 011901 (2015).

    ADS  Article  Google Scholar 

  38. 38.

    Hama, Y., Kodama, T. & Socolowski, O. Jr. Topics on hydrodynamic model of nucleus–nucleus collisions. Braz. J. Phys. 35, 24–51 (2005).

    ADS  Article  Google Scholar 

  39. 39.

    Broniowski, W., Chojnacki, M. & Obara, L. Size fluctuations of the initial source and the event-by-event transverse momentum fluctuations in relativistic heavy-ion collisions. Phys. Rev. C 80, 051902 (2009).

    ADS  Article  Google Scholar 

  40. 40.

    Giacalone, G., Noronha-Hostler, J., Luzum, M. & Ollitrault, J. Y. Hydrodynamic predictions for 5.44 TeV Xe+Xe collisions. Phys. Rev. C 97, 034904 (2018).

    ADS  Article  Google Scholar 

  41. 41.

    Schenke, B., Jeon, S. & Gale, C. (3+1)D hydrodynamic simulation of relativistic heavy-ion collisions. Phys. Rev. C 82, 014903 (2010).

    ADS  Article  Google Scholar 

  42. 42.

    Schenke, B., Jeon, S. & Gale, C. Higher flow harmonics from (3+1)D event-by-event viscous hydrodynamics. Phys. Rev. C 85, 024901 (2012).

    ADS  Article  Google Scholar 

  43. 43.

    Paquet, J. F. et al. Production of photons in relativistic heavy-ion collisions. Phys. Rev. C 93, 044906 (2016).

    ADS  Article  Google Scholar 

  44. 44.

    Niemi, H., Eskola, K. J. & Paatelainen, R. Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: Determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions. Phys. Rev. C 93, 024907 (2016).

    ADS  Article  Google Scholar 

  45. 45.

    Heinz, U. & Snellings, R. Collective flow and viscosity in relativistic heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 63, 123–151 (2013).

    ADS  Article  Google Scholar 

  46. 46.

    Cooper, F. & Frye, G. Comment on the single particle distribution in the hydrodynamic and statistical thermodynamic models of multiparticle production. Phys. Rev. D 10, 186–189 (1974).

    ADS  Article  Google Scholar 

  47. 47.

    Bazavov, A., HotQCD Collaboration. et al. Chiral crossover in QCD at zero and non-zero chemical potentials. Phys. Lett. B 795, 15–21 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  48. 48.

    Gale, C., Jeon, S., Schenke, B., Tribedy, P. & Venugopalan, R. Event-by-event anisotropic flow in heavy-ion collisions from combined Yang–Mills and viscous fluid dynamics. Phys. Rev. Lett. 110, 012302 (2013).

    ADS  Article  Google Scholar 

  49. 49.

    Eskola, K. J., Niemi, H., Paatelainen, R. & Tuominen, K. Predictions for multiplicities and flow harmonics in 5.44 TeV Xe+Xe collisions at the CERN Large Hadron Collider. Phys. Rev. C 97, 034911 (2018).

    ADS  Article  Google Scholar 

  50. 50.

    Weller, R. D. & Romatschke, P. One fluid to rule them all: viscous hydrodynamic description of event-by-event centralp+p, p+Pb and Pb+Pb collisions at \(\sqrt{s}=5.02\) TeV. Phys. Lett. B 774, 351–356 (2017).

    ADS  Article  Google Scholar 

  51. 51.

    Dubla, A. et al. Towards QCD-assisted hydrodynamics for heavy-ion collision phenomenology. Nucl. Phys. A 979, 251–264 (2018).

    ADS  Article  Google Scholar 

  52. 52.

    Teaney, D. et al. The effects of viscosity on spectra, elliptic flow, and HBT radii. Phys. Rev. C 68, 034913 (2003).

    ADS  Article  Google Scholar 

  53. 53.

    Dusling, K., Moore, G. D. & D., Teaney Radiative energy loss and v 2 spectra for viscous hydrodynamics. Phys. Rev. C 81, 034907 (2010).

    ADS  Article  Google Scholar 

  54. 54.

    Bozek, P. et al. Bulk and shear viscosities of matter created in relativistic heavy-ion collisions. Phys. Rev. C 81, 034909 (2010).

    ADS  Article  Google Scholar 

  55. 55.

    Teaney, D., Lauret, J. & Shuryak, E. V. Flow at the SPS and RHIC as a quark gluon plasma signature. Phys. Rev. Lett. 86, 4783–4786 (2001).

    ADS  Article  Google Scholar 

  56. 56.

    Petersen, H., Steinheimer, J., Burau, G., Bleicher, M. & Stocker, H. A fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage. Phys. Rev. C 78, 044901 (2008).

    ADS  Article  Google Scholar 

  57. 57.

    Petersen, H., Steinheimer, J., Bleicher, M. & Stocker, H. The <m T> excitation function: freeze-out and equation of state dependence. J. Phys. G 36, 055104 (2009).

    ADS  Article  Google Scholar 

  58. 58.

    Luo, X. Exploring the QCD phase structure with beam energy scan in heavy-ion collisions. Nucl. Phys. A 956, 75–82 (2016).

    ADS  Article  Google Scholar 

  59. 59.

    Monnai, A. & Ollitrault, J. Y. Constraining the equation of state with identified particle spectra. Phys. Rev. C 96, 044902 (2017).

    ADS  Article  Google Scholar 

Download references


F.G.G. was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq grant 205369/2018-9 and 312932/2018-9). M.L. acknowledges support from FAPESP projects 2016/24029-6 and 2017/05685-2. F.G.G. and M.L. acknowledge support from project INCT-FNA Proc. No. 464898/2014-5 and G.G., M.L. and J.-Y.O. from USP-COFECUB (grant Uc Ph 160-16, 2015/13).

Author information




F.G.G. and G.G. initiated the project and designed the figures. G.G. devised the initial conditions of the hydrodynamic calculations. F.G.G. carried out the hydrodynamic calculations. M.L. suggested the definitions of the effective temperature and effective volume. J.-Y.O. supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Jean-Yves Ollitrault.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Sándor Katz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Source Data Fig. 2

Text file containing the values plotted on the figure.

Source Data Fig. 3

Text file containing the values plotted on the figure.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gardim, F.G., Giacalone, G., Luzum, M. et al. Thermodynamics of hot strong-interaction matter from ultrarelativistic nuclear collisions. Nat. Phys. 16, 615–619 (2020).

Download citation

Further reading