Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bayesian estimation of the specific shear and bulk viscosity of quark–gluon plasma

Abstract

Ultrarelativistic collisions of heavy atomic nuclei produce an extremely hot and dense phase of matter, known as quark–gluon plasma (QGP), which behaves like a near-perfect fluid with the smallest specific shear viscosity—the ratio of the shear viscosity to the entropy density—of any known substance1. Due to its transience (lifetime ~ 10−23 s) and microscopic size (10−14 m), the QGP cannot be observed directly, but only through the particles it emits; however, its characteristics can be inferred by matching the output of computational collision models to experimental observations. Previous work, using viscous relativistic hydrodynamics to simulate QGP, has achieved semiquantitative constraints on key physical properties, such as its specific shear and bulk viscosity, but with large, poorly defined uncertainties2,3,4,5,6,7,8. Here, we present the most precise estimates so far of QGP properties, including their quantitative uncertainties. By applying established Bayesian parameter estimation methods9 to a dynamical collision model and a wide variety of experimental data, we extract estimates of the temperature-dependent specific shear and bulk viscosity simultaneously with related initial-condition properties. The method is extensible to other collision models and experimental data and may be used to characterize additional aspects of high-energy nuclear collisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Estimated temperature-dependent specific shear viscosity of the QGP compared with common fluids.
Fig. 2: Estimated temperature dependence of the specific shear and bulk viscosity.
Fig. 3: Posterior distribution for the initial energy deposition parameter.
Fig. 4: Model calculations using the best-fit MAP parameters compared to experimental data.

Similar content being viewed by others

Data availability

All data necessary to reproduce the present results are available at https://doi.org/10.5281/zenodo.2120892. This includes the parameter design points, the results of all model calculations, and the posterior distribution generated by MCMC sampling.

Code availability

The computational collision model and related tools are available at https://github.com/Duke-QCD/hic-eventgen. The code for performing the Bayesian analysis is available at https://github.com/jbernhard/hic-param-est.

References

  1. Arsene, I. et al. First three years of operation of RHIC. Nucl. Phys. A 757, 1–284 (2005).

    ADS  Google Scholar 

  2. Romatschke, P. & Romatschke, U. Viscosity information from relativistic nuclear collisions: how perfect is the fluid observed at RHIC? Phys. Rev. Lett. 99, 172301 (2007).

    ADS  Google Scholar 

  3. Song, H., Bass, S. A., Heinz, U., Hirano, T. & Shen, C. 200 A GeV Au + Au collisions serve a nearly perfect quark-gluon liquid. Phys. Rev. Lett. 106, 192301 (2011).

    ADS  Google Scholar 

  4. Gale, C., Jeon, S., Schenke, B., Tribedy, P. & Venugopalan, R. Event-by-event anisotropic flow in heavy-ion collisions from combined Yang-Mills and viscous fluid dynamics. Phys. Rev. Lett. 110, 012302 (2013).

    Article  ADS  Google Scholar 

  5. Novak, J. et al. Determining fundamental properties of matter created in ultrarelativistic heavy-ion collisions. Phys. Rev. C 89, 034917 (2014).

    ADS  Google Scholar 

  6. Niemi, H., Eskola, K. J. & Paatelainen, R. Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions. Phys. Rev. C 93, 024907 (2016).

    ADS  Google Scholar 

  7. Bernhard, J. E. et al. Quantifying properties of hot and dense QCD matter through systematic model-to-data comparison. Phys. Rev. C 91, 054910 (2015).

    ADS  Google Scholar 

  8. Bernhard, J. E., Moreland, J. S., Bass, S. A., Liu, J. & Heinz, U. Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium. Phys. Rev. C 94, 024907 (2016).

    ADS  Google Scholar 

  9. Higdon, D., Gattiker, J., Williams, B. & Rightley, M. Computer model calibration using high-dimensional output. J. Am. Stat. Assoc. 103, 570–583 (2008).

    MathSciNet  MATH  Google Scholar 

  10. Bazavov, A. et al. Chiral crossover in QCD at zero and non-zero chemical potentials. Phys. Lett. B 795, 15–21 (2019).

    ADS  MathSciNet  Google Scholar 

  11. Voloshin, S. & Zhang, Y. Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions. Phys. Rev. C 70, 665–672 (1996).

    Google Scholar 

  12. Poskanzer, A. M. & Voloshin, S. A. Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. C 58, 1671–1678 (1998).

    ADS  Google Scholar 

  13. Ollitrault, J.-Y. Anisotropy as a signature of transverse collective flow. Phys. Rev. D 46, 229–245 (1992).

    ADS  Google Scholar 

  14. Cao, C. et al. Universal quantum viscosity in a unitary Fermi gas. Science 331, 58–61 (2011).

    ADS  Google Scholar 

  15. Shen, C. et al. The iEBE-VISHNU code package for relativistic heavy-ion collisions. Comput. Phys. Commun. 199, 61–85 (2016).

    ADS  MathSciNet  Google Scholar 

  16. Tanabashi, M. et al. Review of particle physics. Phys. Rev. D 98, 030001 (2018).

    ADS  Google Scholar 

  17. Abbott, B. P. et al. Properties of the binary black hole merger GW150914. Phys. Rev. Lett. 116, 241102 (2016).

    ADS  MathSciNet  Google Scholar 

  18. Song, H. & Heinz, U. W. Causal viscous hydrodynamics in 2 + 1 dimensions for relativistic heavy-ion collisions. Phys. Rev. C 77, 064901 (2008).

    ADS  Google Scholar 

  19. Moreland, J. S., Bernhard, J. E. & Bass, S. A. Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions. Phys. Rev. C 92, 011901 (2015).

    ADS  Google Scholar 

  20. Bernhard, J. E. Bayesian Parameter Estimation for Relativistic Heavy-Ion Collisions. PhD thesis, Duke Univ. https://arxiv.org/abs/1804.06469 (2018).

  21. Aamodt, K. et al. Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb–Pb collisions at \(\sqrt {s_{NN}} = 2.76\) TeV. Phys. Rev. Lett. 106, 032301 (2011).

    ADS  Google Scholar 

  22. Adam, J. et al. Measurement of transverse energy at midrapidity in Pb–Pb collisions at \(\sqrt {s_{{\mathrm{NN}}}} = 2.76\) TeV. Phys. Rev. C 94, 034903 (2016).

    ADS  Google Scholar 

  23. Abelev, B. et al. Centrality dependence of π, K, p production in Pb–Pb collisions at \(\sqrt {s_{NN}} = 2.76\) TeV. Phys. Rev. C 88, 044910 (2013).

    ADS  Google Scholar 

  24. Abelev, B. B. et al. Event-by-event mean p T fluctuations in pp and Pb–Pb collisions at the LHC. Eur. Phys. J. C 74, 3077 (2014).

    ADS  Google Scholar 

  25. Aamodt, K. et al. Higher harmonic anisotropic flow measurements of charged particles in Pb–Pb collisions at \(\sqrt {s_{NN}} = 2.76\) TeV. Phys. Rev. Lett. 107, 032301 (2011).

    ADS  Google Scholar 

  26. Adam, J. et al. Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb–Pb collisions at\(\sqrt {s_{{\mathrm{NN}}}} = 5.02\) TeV. Phys. Rev. Lett. 116, 222302 (2016).

    ADS  Google Scholar 

  27. Adam, J. et al. Anisotropic flow of charged particles in Pb–Pb collisions at \(\sqrt {s_{{\mathrm{NN}}}} = 5.02\) TeV. Phys. Rev. Lett. 116, 132302 (2016).

    ADS  Google Scholar 

  28. Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (MIT Press, 2006); http://gaussianprocess.org/gpml

  29. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    ADS  Google Scholar 

  30. Bazavov, A. et al. Equation of state in (2 + 1)-flavor QCD. Phys. Rev. D 90, 094503 (2014).

    ADS  Google Scholar 

  31. Lemmon, E. W., McLinden, M. O. & Friend, D. G. in NIST Chemistry WebBook (eds Linstrom, P. J. & Mallard, W. G.) SRG 69 (National Institute of Standards and Technology, 2018); https://webbook.nist.gov/chemistry/fluid

  32. Rose, J.-B., Torres-Rincon, J. M., Schäfer, A., Oliinychenko, D. R. & Petersen, H. Shear viscosity of a hadron gas and influence of resonance lifetimes on relaxation time. Phys. Rev. C 97, 055204 (2018).

    ADS  Google Scholar 

  33. Schenke, B., Tribedy, P. & Venugopalan, R. Fluctuating Glasma initial conditions and flow in heavy ion collisions. Phys. Rev. Lett. 108, 252301 (2012).

    ADS  Google Scholar 

  34. Xu, Y., Bernhard, J. E., Bass, S. A., Nahrgang, M. & Cao, S. Data-driven analysis for the temperature and momentum dependence of the heavy-quark diffusion coefficient in relativistic heavy-ion collisions. Phys. Rev. C 97, 014907 (2018).

    ADS  Google Scholar 

  35. Moreland, J. S., Bernhard, J. E. & Bass, S. A. Estimating initial state and quark-gluon plasma medium properties using a hybrid model with nucleon substructure calibrated to p-Pb and Pb–Pb collisions at \(\sqrt {s_{{\mathrm{NN}}}} = 5.02\) TeV. Preprint at https://arxiv.org/abs/1808.02106 (2018).

  36. Kharzeev, D., Levin, E. & Nardi, M. The onset of classical QCD dynamics in relativistic heavy ion collisions. Phys. Rev. C 71, 054903 (2005).

    ADS  Google Scholar 

  37. De Vries, H., De Jager, C. W. & De Vries, C. Nuclear charge and magnetization density distribution parameters from elastic electron scattering. At. Data Nucl. Data Tables 36, 495–536 (1987).

    ADS  Google Scholar 

  38. Glauber, R. J. & Matthiae, G. High-energy scattering of protons by nuclei. Nucl. Phys. B 21, 135–157 (1970).

    ADS  Google Scholar 

  39. Miller, M. L., Reygers, K., Sanders, S. J. & Steinberg, P. Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 57, 205–243 (2007).

    ADS  Google Scholar 

  40. Aad, G. et al. Measurement of the centrality dependence of the charged particle pseudorapidity distribution in lead–lead collisions at \(\sqrt {s_{NN}} = 2.76\) TeV with the ATLAS detector. Phys. Lett. B 710, 363–382 (2012).

    ADS  Google Scholar 

  41. Abelev, B. et al. Pseudorapidity density of charged particles in p + Pb collisions at \(\sqrt {s_{NN}} = 5.02\) TeV. Phys. Rev. Lett. 110, 032301 (2013).

    ADS  Google Scholar 

  42. Van der Schee, W., Romatschke, P. & Pratt, S. Fully dynamical simulation of central nuclear collisions. Phys. Rev. Lett. 111, 222302 (2013).

    ADS  Google Scholar 

  43. Kurkela, A., Mazeliauskas, A., Paquet, J.-F., Schlichting, S. & Teaney, D. Effective kinetic description of event-by-event pre-equilibrium dynamics in high-energy heavy-ion collisions. Phys. Rev. C 99, 034910 (2019).

    ADS  Google Scholar 

  44. Broniowski, W., Florkowski, W., Chojnacki, M. & Kisiel, A. Free-streaming approximation in early dynamics of relativistic heavy-ion collisions. Phys. Rev. C 80, 034902 (2009).

    ADS  Google Scholar 

  45. Liu, J., Shen, C. & Heinz, U. Pre-equilibrium evolution effects on heavy-ion collision observables. Phys. Rev. C 91, 064906 (2015); erratum 92, 049904 (2015).

  46. Vredevoogd, J. & Pratt, S. Viscous hydrodynamics and relativistic heavy ion collisions. Phys. Rev. C 85, 044908 (2012).

    ADS  Google Scholar 

  47. Shen, C., Paquet, J.-F., Denicol, G. S., Jeon, S. & Gale, C. Collectivity and electromagnetic radiation in small systems. Phys. Rev. C 95, 014906 (2017).

    ADS  Google Scholar 

  48. Israel, W. & Stewart, J. Thermodynamics of nonstationary and transient effects in a relativistic gas. Phys. Lett. A 58, 213–215 (1976).

    ADS  Google Scholar 

  49. Israel, W. & Stewart, J. M. Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 118, 341–372 (1979).

    ADS  MathSciNet  Google Scholar 

  50. Denicol, G. S., Koide, T. & Rischke, D. H. Dissipative relativistic fluid dynamics: a new way to derive the equations of motion from kinetic theory. Phys. Rev. Lett. 105, 162501 (2010).

    ADS  Google Scholar 

  51. Denicol, G. S., Niemi, H., Molnar, E. & Rischke, D. H. Derivation of transient relativistic fluid dynamics from the Boltzmann equation. Phys. Rev. D 85, 114047 (2012); erratum 91, 039902 (2015).

  52. Csernai, L. P., Kapusta, J. & McLerran, L. D. On the strongly interacting low-viscosity matter created in relativistic nuclear collisions. Phys. Rev. Lett. 97, 152303 (2006).

    ADS  Google Scholar 

  53. Noronha-Hostler, J., Noronha, J. & Greiner, C. Transport coefficients of hadronic matter near T c. Phys. Rev. Lett. 103, 172302 (2009).

    ADS  Google Scholar 

  54. Karsch, F., Kharzeev, D. & Tuchin, K. Universal properties of bulk viscosity near the QCD phase transition. Phys. Lett. B 663, 217–221 (2008).

    ADS  Google Scholar 

  55. Kharzeev, D. & Tuchin, K. Bulk viscosity of QCD matter near the critical temperature. J. High Energy Phys. 09, 93–93 (2008).

    ADS  Google Scholar 

  56. Arnold, P. B., Dogan, C. & Moore, G. D. The bulk viscosity of high-temperature QCD. Phys. Rev. D 74, 085021 (2006).

    ADS  Google Scholar 

  57. Dusling, K. & Schäfer, T. Bulk viscosity, particle spectra and flow in heavy-ion collisions. Phys. Rev. C 85, 044909 (2012).

    ADS  Google Scholar 

  58. Denicol, G. S., Jeon, S. & Gale, C. Transport coefficients of bulk viscous pressure in the 14-moment approximation. Phys. Rev. C 90, 024912 (2014).

    ADS  Google Scholar 

  59. Bass, S. A. & Dumitru, A. Dynamics of hot bulk QCD matter: from the quark gluon plasma to hadronic freezeout. Phys. Rev. C 61, 064909 (2000).

    ADS  Google Scholar 

  60. Petersen, H., Steinheimer, J., Burau, G., Bleicher, M. & Stocker, H. A fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage. Phys. Rev. C 78, 044901 (2008).

    ADS  Google Scholar 

  61. Cooper, F. & Frye, G. Comment on the single particle distribution in the hydrodynamic and statistical thermodynamic models of multiparticle production. Phys. Rev. D 10, 186–189 (1974).

    ADS  Google Scholar 

  62. Pratt, S. & Torrieri, G. Coupling relativistic viscous hydrodynamics to Boltzmann descriptions. Phys. Rev. C 82, 044901 (2010).

    ADS  Google Scholar 

  63. Bass, S. A. et al. Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 41, 255–369 (1998).

    ADS  Google Scholar 

  64. Bleicher, M. et al. Relativistic hadron-hadron collisions in the ultrarelativistic quantum molecular dynamics model. J. Phys. G 25, 1859–1896 (1999).

    ADS  Google Scholar 

  65. Abelev, B. et al. Centrality determination of Pb–Pb collisions at \(\sqrt {s_{NN}} = 2.76\) TeV with ALICE. Phys. Rev. C 88, 044909 (2013).

    ADS  Google Scholar 

  66. Bilandzic, A., Snellings, R. & Voloshin, S. Flow analysis with cumulants: direct calculations. Phys. Rev. C 83, 044913 (2011).

    ADS  Google Scholar 

  67. Higdon, D., McDonnell, J. D., Schunck, N., Sarich, J. & Wild, S. M. A Bayesian approach for parameter estimation and prediction using a computationally intensive model. J. Phys. G 42, 034009 (2015).

    ADS  Google Scholar 

  68. Tang, B. Orthogonal array-based Latin hypercubes. J. Am. Stat. Assoc. 88, 1392–1397 (1993).

    MathSciNet  MATH  Google Scholar 

  69. Morris, M. D. & Mitchell, T. J. Exploratory designs for computational experiments. J. Stat. Plan. Inference 43, 381–402 (1995).

    MATH  Google Scholar 

  70. Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).

    MathSciNet  MATH  Google Scholar 

  71. Adam, J. et al. Correlated event-by-event fluctuations of flow harmonics in Pb–Pb collisions at \(\sqrt {s_{{\mathrm{NN}}}} = 2.76\) TeV. Phys. Rev. Lett. 117, 182301 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

This research was completed using 3 million CPU hours provided by the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility operated under contract no. DE-AC02-05CH11231. J.S.M. and S.A.B. are supported by the US Department of Energy grant no. DE-FG02-05ER41367 and J.E.B. by NSF grant no. NSF-ACI-1550225. J.S.M. also acknowledges former support by the DOE/NNSA Stockpile Stewardship Graduate Fellowship under grant no. DE-FC52-08NA28752 for research contributing to this work. We thank U. Heinz and The Ohio State University group for general discussions and assistance, including the use of their viscous relativistic hydrodynamics code, and S. Pratt for insights into the parameter estimation procedure and particlization model.

Author information

Authors and Affiliations

Authors

Contributions

J.E.B. performed the Bayesian analysis, developed several components of the nuclear collision model, and is the primary author of the manuscript. J.S.M. codeveloped the initial-condition model and contributed to multiple aspects of the collision model and computer experiment design. S.A.B. (principal investigator) conceived the project and directed its overall execution.

Corresponding author

Correspondence to Jonah E. Bernhard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Physics thanks Kari J. Eskola, Johanna Stachel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, figures and tables.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernhard, J.E., Moreland, J.S. & Bass, S.A. Bayesian estimation of the specific shear and bulk viscosity of quark–gluon plasma. Nat. Phys. 15, 1113–1117 (2019). https://doi.org/10.1038/s41567-019-0611-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0611-8

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics