Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Floquet prethermalization in dipolar spin chains

Abstract

Periodically driven Floquet quantum systems could provide a promising platform to investigate novel physics out of equilibrium1, but the drive generically heats the system to a featureless infinite-temperature state2,3,4. Fortunately, for high driving frequency, the heat absorption rate has been theoretically predicted to be exponentially small, giving rise to a long-lived prethermal regime that exhibits all the intriguing properties of Floquet systems5,6,7,8. Here we experimentally observe Floquet prethermalization using NMR techniques and probe the heating rate. We first show the relaxation of a far-from-equilibrium initial state to a long-lived prethermal state, well described by a time-independent ‘prethermal’ Hamiltonian. By measuring the autocorrelation of this prethermal Hamiltonian we can further experimentally confirm the predicted exponentially slow heating rate. More strikingly, we find that, on the timescale at which the prethermal Hamiltonian picture breaks down, the Floquet system still possesses other quasiconservation laws. Our results demonstrate that it is possible to realize robust Floquet engineering, thus enabling the experimental observation of non-trivial Floquet phases of matter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of the experimental system and Floquet prethermalization.
Fig. 2: Breakdown of energy conservation and Floquet heating rate.
Fig. 3: Robustness of dipolar order.

Data availability

Source data and all other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124–130 (2015).

    Article  Google Scholar 

  2. 2.

    Lazarides, A., Das, A. & Moessner, R. Equilibrium states of generic quantum systems subject to periodic driving. Phys. Rev. E 90, 012110 (2014).

    ADS  Article  Google Scholar 

  3. 3.

    D’Alessio, L. & Rigol, M. Long-time behavior of isolated periodically driven interacting lattice systems. Phys. Rev. X 4, 041048 (2014).

    Google Scholar 

  4. 4.

    Kim, H., Ikeda, T. N. & Huse, D. A. Testing whether all eigenstates obey the eigenstate thermalization hypothesis. Phys. Rev. E 90, 052105 (2014).

    ADS  Article  Google Scholar 

  5. 5.

    Abanin, D. A., De Roeck, W., Ho, W. W. & Huveneers, F. Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017).

    ADS  Article  Google Scholar 

  6. 6.

    Abanin, D. A., De Roeck, W. & Huveneers, F. Exponentially slow heating in periodically driven many-body systems. Phys. Rev. Lett. 115, 256803 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    Kuwahara, T., Mori, T. & Saito, K. Floquet–Magnus theory and generic transient dynamics in periodically driven many-body quantum systems. Ann. Phys. 367, 96–124 (2016).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Abanin, D., De Roeck, W., Ho, W. W. & Huveneers, F. A rigorous theory of many-body prethermalization for periodically driven and closed quantum systems. Commun. Math. Phys. 354, 809–827 (2017).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Gómez-León, A. & Platero, G. Floquet–Bloch theory and topology in periodically driven lattices. Phys. Rev. Lett. 110, 200403 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

    Article  Google Scholar 

  11. 11.

    Wang, Y., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    ADS  Article  Google Scholar 

  12. 12.

    Eckardt, A., Weiss, C. & Holthaus, M. Superfluid–insulator transition in a periodically driven optical lattice. Phys. Rev. Lett. 95, 260404 (2005).

    ADS  Article  Google Scholar 

  13. 13.

    Tsuji, N., Oka, T., Werner, P. & Aoki, H. Dynamical band flipping in fermionic lattice systems: an ac-field-driven change of the interaction from repulsive to attractive. Phys. Rev. Lett. 106, 236401 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Görg, F. Enhancement and sign change of magnetic correlations in a driven quantum many-body system. Nature 553, 481–485 (2018).

    ADS  Article  Google Scholar 

  15. 15.

    Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Childs, A. M., Maslov, D., Nam, Y., Ross, N. J. & Su, Y. Toward the first quantum simulation with quantum speedup. Proc. Natl Acad. Sci. USA 115, 9456–9461 (2018).

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Choi, S. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Zhang, J. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Bastidas, V. M., Emary, C., Regler, B. & Brandes, T. Nonequilibrium quantum phase transitions in the Dicke model. Phys. Rev. Lett. 108, 043003 (2012).

    ADS  Article  Google Scholar 

  20. 20.

    Wei, K. X., Ramanathan, C. & Cappellaro, P. Exploring localization in nuclear spin chains. Phys. Rev. Lett. 120, 070501 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    Lazarides, A., Das, A. & Moessner, R. Fate of many-body localization under periodic driving. Phys. Rev. Lett. 115, 030402 (2015).

    ADS  Article  Google Scholar 

  22. 22.

    Ponte, P., Papić, Z., Huveneers, F. & Abanin, D. A. Many-body localization in periodically driven systems. Phys. Rev. Lett. 114, 140401 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Bordia, P., Lüschen, H., Schneider, U., Knap, M. & Bloch, I. Periodically driving a many-body localized quantum system. Nat. Phys. 13, 460–464 (2017).

    Article  Google Scholar 

  24. 24.

    Khemani, V., Lazarides, A., Moessner, R. & Sondhi, S. L. Phase structure of driven quantum systems. Phys. Rev. Lett. 116, 250401 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Heyl, M., Hauke, P. & Zoller, P. Quantum localization bounds Trotter errors in digital quantum simulation. Sci. Adv. 5, eaau8342 (2019).

    ADS  Article  Google Scholar 

  26. 26.

    Sieberer, L. M. Digital quantum simulation, Trotter errors, and quantum chaos of the kicked top. npj Quantum Inf. 5, 78 (2019).

    ADS  Article  Google Scholar 

  27. 27.

    Ji, K. & Fine, B. V. Suppression of heating in quantum spin clusters under periodic driving as a dynamic localization effect. Phys. Rev. Lett. 121, 050602 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    D’Alessio, L. & Polkovnikov, A. Many-body energy localization transition in periodically driven systems. Ann. Phys. 333, 19–33 (2013).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Yin, C., Peng, P., Huang, X., Ramanathan, C. & Cappellaro, P. Prethermal quasiconserved observables in Floquet quantum systems. Preprint at https://arxiv.org/abs/2005.11150 (2020).

  30. 30.

    Else, D. V., Bauer, B. & Nayak, C. Prethermal phases of matter protected by time-translation symmetry. Phys. Rev. X 7, 011026 (2017).

    Google Scholar 

  31. 31.

    Luitz, D. J., Moessner, R., Sondhi, S. L. & Khemani, V. Prethermalization without temperature. Phys. Rev. X 10, 021046 (2020).

    Google Scholar 

  32. 32.

    Machado, F., Else, D. V., Kahanamoku-Meyer, G. D., Nayak, C. & Yao, N. Y. Long-range prethermal phases of nonequilibrium matter. Phys. Rev. X 10, 011043 (2020).

    Google Scholar 

  33. 33.

    Herrmann, A., Murakami, Y., Eckstein, M. & Werner, P. Floquet prethermalization in the resonantly driven Hubbard model. Europhys. Lett. 120, 57001 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    Bukov, M., Heyl, M., Huse, D. A. & Polkovnikov, A. Heating and many-body resonances in a periodically driven two-band system. Phys. Rev. B 93, 155132 (2016).

    ADS  Article  Google Scholar 

  35. 35.

    Mallayya, K. & Rigol, M. Heating rates in periodically driven strongly interacting quantum many-body systems. Phys. Rev. Lett. 123, 240603 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    Goldman, M. Spin Temperature and NMR in Solids (Clarendon, 1970).

  37. 37.

    Wei, K. X. Emergent prethermalization signatures in out-of-time ordered correlations. Phys. Rev. Lett. 123, 090605 (2019).

    ADS  Article  Google Scholar 

  38. 38.

    Jeener, J. & Broekaert, P. Nuclear magnetic resonance in solids: thermodynamic effects of a pair of rf pulses. Phys. Rev. 157, 232–240 (1967).

    ADS  Article  Google Scholar 

  39. 39.

    Rubio-Abadal, A. Floquet prethermalization in a Bose–Hubbard system. Phys. Rev. X 10, 021044 (2020).

    Google Scholar 

  40. 40.

    Ramanathan, C., Cappellaro, P., Viola, L. & Cory, D. G. Experimental characterization of coherent magnetization transport in a one-dimensional spin system. New J. Phys. 13, 103015 (2011).

    ADS  Article  Google Scholar 

  41. 41.

    Magnus, W. On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649–673 (1954).

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Blanes, S., Casas, F., Oteo, J. & Ros, J. The Magnus expansion and some of its applications. Phys. Rep. 470, 151–238 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  43. 43.

    Bukov, M., D’Alessio, L. & Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64, 139–226 (2015).

    ADS  Article  Google Scholar 

  44. 44.

    Yan, F. Rotating-frame relaxation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution. Nat. Commun. 4, 2337 (2013).

    ADS  Article  Google Scholar 

  45. 45.

    Laucht, A. A dressed spin qubit in silicon. Nat. Nanotechnol. 12, 61–66 (2017).

    ADS  Article  Google Scholar 

  46. 46.

    Golter, D. A., Baldwin, T. K. & Wang, H. Protecting a solid-state spin from decoherence using dressed spin states. Phys. Rev. Lett. 113, 237601 (2014).

    ADS  Article  Google Scholar 

  47. 47.

    Timoney, N. Quantum gates and memory using microwave-dressed states. Nature 476, 185–188 (2011).

    ADS  Article  Google Scholar 

  48. 48.

    Munowitz, M. & Pines, A. in Advances in Chemical Physics Vol. 66 (eds Prigogine, I. & Rice, S.) 1–152 (Wiley, 1975).

  49. 49.

    Gärttner, M., Hauke, P. & Rey, A. M. Relating out-of-time-order correlations to entanglement via multiple-quantum coherences. Phys. Rev. Lett. 120, 040402 (2018).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We thank H. Zhou, W.-J. Zhang and Z. Li for discussion. This work was supported in part by the National Science Foundation under grants no. PHY1734011, no. PHY1915218 and no. OIA-1921199.

Author information

Affiliations

Authors

Contributions

P.P. performed the experiments. P.P. and C.Y. analysed the data and developed the theoretical modelling. P.C. supervised the project. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Pai Peng or Paola Cappellaro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Background decay dependence on Jτ.

Decay rate of 〈Y(n)Y〉 (blue) and 〈Dy(n)Dy〉 (green) under engineered dipolar Hamiltonian JDy as a function of Jτ. The range of Jτ studied was obtained by varying the scaling u (Supplementary Information) from 0.098 to 0.646, while keeping fixed τ = 120μs. In the inset, we compare the background decay rates with the Floquet decay rates (dashed lines).

Extended Data Fig. 2 Signatures of a robust quasiconserved quantity for the kicked dipolar model.

We numerically evaluate the expansion of the quasiconserved quantity Dpre and plot the norm of each term (normalized by L2L) as a function of the expansion order m, for various hτ = Jτ. Jτ varies from 0 (light colors) to 2 (dark colors) in steps of 0.2. (a) Infidelity 1 − 〈Dpre()Dpre〉/〈DpreDpre〉 of the infinite-time averaged Dpre as a function of the order, m, for various hτ = Jτ. Jτ varies from 0 (light colors) to 2 (dark colors) in steps of 0.2. (b) Infidelity 1 − 〈Hpre()Hpre〉/〈HpreHpre〉 of the infinite-time averaged prethermal Hamiltonian Hpre as a function of the order, m, for various hτ = Jτ. L = 12 was used in (a-b). The normalized autocorrelation of Hpre converges to 1 in a smaller parameter range (Jτ 1) than Dpre (Jτ 1.6) (c) Fidelities of the two conserved quantities (〈Hpre()Hpre〉/〈HpreHpre〉 and 〈Dpre()Dpre〉/〈DpreDpre〉) evaluated to 7th order as a function of hτ for three different system sizes. The fidelities show a notable drop when L is increased from 8 to 12 at Jτ 1.8 for Dpre and Jτ 1.2 for Hpre, again indicating that Dpre is more robust than Hpre.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peng, P., Yin, C., Huang, X. et al. Floquet prethermalization in dipolar spin chains. Nat. Phys. (2021). https://doi.org/10.1038/s41567-020-01120-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing