Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tailoring quantum gases by Floquet engineering

Abstract

Floquet engineering is the concept of tailoring a system by a periodic drive, and it is increasingly employed in many areas of physics. Ultracold atoms in optical lattices offer a particularly large toolbox to design a variety of driving schemes. A strong motivation for developing these methods is the prospect to study the interplay between topology and interactions in a system where both ingredients are fully tunable. We review the recent successes of Floquet engineering in realizing new classes of Hamiltonians in quantum gases, such as Hamiltonians including artificial gauge fields, topological band structures and density-dependent tunnelling. The creation of periodically driven systems also gives rise to phenomena without static counterparts such as anomalous Floquet topological insulators. We discuss the challenges facing the field, particularly the control of heating mechanisms, which currently limit the preparation of many-body phases, as well as the potential future developments as these obstacles are overcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effective Hamiltonian and renormalized tunnelling.
Fig. 2: Artificial gauge fields and topological band structures.
Fig. 3: Floquet schemes in correlated systems.
Fig. 4: Physics beyond an equilibrium description.

Similar content being viewed by others

References

  1. Bukov, M., D’Alessio, L. & Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64, 139–226 (2015).

    Article  ADS  Google Scholar 

  2. Eckardt, A. Colloquium: atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  3. Goldman, N. & Dalibard, J. Periodically driven quantum systems: effective Hamiltonians and engineered gauge fields. Phys. Rev. X 4, 031027 (2014).

    Google Scholar 

  4. Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2019).

    Article  ADS  Google Scholar 

  5. Rudner, M. S. & Lindner, N. H. Floquet topological insulators: from band structure engineering to novel non-equilibrium quantum phenomena. Nat. Rev. Phys. 2, 229–244 (2020).

    Article  Google Scholar 

  6. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  7. McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

    Article  Google Scholar 

  8. Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124–130 (2015).

    Article  Google Scholar 

  9. Cooper, N. R., Dalibard, J. & Spielman, I. B. Topological bands for ultracold atoms. Rev. Mod. Phys. 91, 015005 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  10. Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Emergence of a turbulent cascade in a quantum gas. Nature 539, 72–75 (2016).

    Article  ADS  Google Scholar 

  11. Clark, L. W., Gaj, A., Feng, L. & Chin, C. Collective emission of matter-wave jets from driven Bose–Einstein condensates. Nature 551, 356–359 (2017).

    Article  ADS  Google Scholar 

  12. Zhang, Z., Yao, K. X., Feng, L., Hu, J. & Chin, C. Pattern formation in a driven Bose–Einstein condensate. Nat. Phys. 16, 652–656 (2020).

    Article  Google Scholar 

  13. Lignier, H. et al. Dynamical control of matter-wave tunneling in periodic potentials. Phys. Rev. Lett. 99, 220403 (2007).

    Article  ADS  Google Scholar 

  14. Jotzu, G. et al. Creating state-dependent lattices for ultracold fermions by magnetic gradient modulation. Phys. Rev. Lett. 115, 073002 (2015).

    Article  ADS  Google Scholar 

  15. Struck, J. et al. Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996–999 (2011).

    Article  ADS  Google Scholar 

  16. Struck, J. et al. Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields. Nat. Phys. 9, 738–743 (2013).

    Article  Google Scholar 

  17. Parker, C. V., Ha, L. C. & Chin, C. Direct observation of effective ferromagnetic domains of cold atoms in a shaken optical lattice. Nat. Phys. 9, 769–774 (2013).

    Article  Google Scholar 

  18. Fujiwara, C. J. et al. Transport in Floquet–Bloch bands. Phys. Rev. Lett. 122, 010402 (2019).

    Article  ADS  Google Scholar 

  19. Clark, L. W., Feng, L. & Chin, C. Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition. Science 354, 606–610 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Fläschner, N. et al. Experimental reconstruction of the Berry curvature in a Floquet Bloch band. Science 352, 1091–1094 (2016).

    Article  ADS  Google Scholar 

  21. Struck, J. et al. Tunable gauge potential for neutral and spinless particles in driven optical lattices. Phys. Rev. Lett. 108, 225304 (2012).

    Article  ADS  Google Scholar 

  22. Jiménez-García, K. et al. Peierls substitution in an engineered lattice potential. Phys. Rev. Lett. 108, 225303 (2012).

    Article  ADS  Google Scholar 

  23. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    Article  ADS  Google Scholar 

  24. Lin, Y. J. et al. A synthetic electric force acting on neutral atoms. Nat. Phys. 7, 531–534 (2011).

    Article  Google Scholar 

  25. Dalibard, J., Gerbier, F., Juzeliunas, G. & Öhberg, P. Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523–1543 (2011).

    Article  ADS  Google Scholar 

  26. Lewenstein, M., Sanpera, A. & Ahufinger, V. Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems (Oxford Univ. Press, 2012).

  27. Zhang, D. W., Zhu, Y. Q., Zhao, Y. X., Yan, H. & Zhu, S. L. Topological quantum matter with cold atoms. Adv. Phys. 67, 253–402 (2018).

    Article  ADS  Google Scholar 

  28. Wang, B., Dong, X.-Y., Ünal, F. N. & Eckardt, A. Robust and ultrafast state preparation by ramping artificial gauge potentials. New J. Phys. 23, 063017 (2021).

    Article  ADS  Google Scholar 

  29. Jaksch, D. & Zoller, P. Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms. New J. Phys. 5, 56.1–56.11 (2003).

    Article  Google Scholar 

  30. Gerbier, F. & Dalibard, J. Gauge fields for ultracold atoms in optical superlattices. New J. Phys. 12, 033007 (2010).

    Article  ADS  Google Scholar 

  31. Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).

    Article  ADS  Google Scholar 

  32. Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).

    Article  ADS  Google Scholar 

  33. Kennedy, C. J., Burton, W. C., Chung, W. C. & Ketterle, W. Observation of Bose–Einstein condensation in a strong synthetic magnetic field. Nat. Phys. 11, 859–864 (2015).

    Article  Google Scholar 

  34. Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2015).

    Article  Google Scholar 

  35. Tai, M. E. et al. Microscopy of the interacting Harper–Hofstadter model in the two-body limit. Nature 546, 519–523 (2017).

    Article  ADS  Google Scholar 

  36. Celi, A. et al. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014).

    Article  ADS  Google Scholar 

  37. Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Stuhl, B. K., Lu, H.-I., Aycock, L. M., Genkina, D. & Spielman, I. B. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. An, F. A., Meier, E. J. & Gadway, B. Direct observation of chiral currents and magnetic reflection in atomic flux lattices. Sci. Adv. 3, e1602685 (2017).

    Article  ADS  Google Scholar 

  40. Chalopin, T. et al. Probing chiral edge dynamics and bulk topology of a synthetic Hall system. Nat. Phys. 16, 1017–1021 (2020).

    Article  Google Scholar 

  41. Haldane, F. D. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  ADS  Google Scholar 

  42. Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009).

    Article  ADS  Google Scholar 

  43. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  44. Tran, D. T., Dauphin, A., Grushin, A. G., Zoller, P. & Goldman, N. Probing topology by ‘heating’: quantized circular dichroism in ultracold atoms. Sci. Adv. 3, e1701207 (2017).

    Article  ADS  Google Scholar 

  45. Asteria, L. et al. Measuring quantized circular dichroism in ultracold topological matter. Nat. Phys. 15, 449–454 (2019).

    Article  Google Scholar 

  46. Ruseckas, J., Juzeliunas, G., Öhberg, P. & Fleischhauer, M. Non-Abelian gauge potentials for ultracold atoms with degenerate dark states. Phys. Rev. Lett. 95, 010404 (2005).

    Article  ADS  Google Scholar 

  47. Hauke, P. et al. Non-Abelian gauge fields and topological insulators in shaken optical lattices. Phys. Rev. Lett. 109, 145301 (2012).

    Article  ADS  Google Scholar 

  48. Burrello, M., Fulga, I. C., Alba, E., Lepori, L. & Trombettoni, A. Topological phase transitions driven by non-Abelian gauge potentials in optical square lattices. Phys. Rev. A 88, 053619 (2013).

    Article  ADS  Google Scholar 

  49. Galitski, V. & Spielman, I. B. Spin–orbit coupling in quantum gases. Nature 494, 49–54 (2013).

    Article  ADS  Google Scholar 

  50. Wang, P. et al. Spin-orbit coupled degenerate Fermi gases. Phys. Rev. Lett. 109, 095301 (2012).

    Article  ADS  Google Scholar 

  51. Cheuk, L. W. et al. Spin-injection spectroscopy of a spin–orbit coupled Fermi gas. Phys. Rev. Lett. 109, 095302 (2012).

    Article  ADS  Google Scholar 

  52. Wu, Z. et al. Realization of two-dimensional spin–orbit coupling for Bose–Einstein condensates. Science 354, 83–88 (2016).

    Article  ADS  Google Scholar 

  53. Huang, L. et al. Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases. Nat. Phys. 12, 540–544 (2016).

    Article  Google Scholar 

  54. Li, J. et al. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature 543, 91–94 (2017).

    Article  ADS  Google Scholar 

  55. Huang, L. et al. Observation of Floquet bands in driven spin–orbit-coupled Fermi gases. Phys. Rev. A 98, 013615 (2018).

    Article  ADS  Google Scholar 

  56. Sugawa, S., Salces-Carcoba, F., Perry, A. R., Yue, Y. & Spielman, I. B. Second Chern number of a quantum-simulated non-Abelian Yang monopole. Science 360, 1429–1434 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Song, B. et al. Observation of nodal-line semimetal with ultracold fermions in an optical lattice. Nat. Phys. 15, 911–916 (2019).

    Article  Google Scholar 

  58. Duca, L. et al. An Aharonov–Bohm interferometer for determining Bloch band topology. Science 347, 288–292 (2015).

    Article  ADS  Google Scholar 

  59. Nakajima, S. et al. Topological Thouless pumping of ultracold fermions. Nat. Phys. 12, 296–300 (2016).

    Article  Google Scholar 

  60. Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice. Nat. Phys. 12, 350–354 (2016).

    Article  Google Scholar 

  61. Fläschner, N. et al. Observation of dynamical vortices after quenches in a system with topology. Nat. Phys. 14, 265–268 (2018).

    Article  Google Scholar 

  62. Wang, C., Zhang, P., Chen, X., Yu, J. & Zhai, H. Scheme to measure the topological number of a Chern insulator from quench dynamics. Phys. Rev. Lett. 118, 185701 (2017).

    Article  ADS  Google Scholar 

  63. Sun, W. et al. Uncover topology by quantum quench dynamics. Phys. Rev. Lett. 121, 250403 (2018).

    Article  ADS  Google Scholar 

  64. Tarnowski, M. et al. Measuring topology from dynamics by obtaining the Chern number from a linking number. Nat. Commun. 10, 1728 (2019).

    Article  ADS  Google Scholar 

  65. McGinley, M. & Cooper, N. R. Interacting symmetry-protected topological phases out of equilibrium. Phys. Rev. Res. 1, 033204 (2019).

    Article  Google Scholar 

  66. Ünal, F. N., Eckardt, A. & Slager, R.-J. Hopf characterization of two-dimensional Floquet topological insulators. Phys. Rev. Res. 1, 022003(R) (2019).

    Article  Google Scholar 

  67. Regnault, N. & Andrei Bernevig, B. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).

    Google Scholar 

  68. Grushin, A. G., Gómez-León, Á. & Neupert, T. Floquet fractional Chern insulators. Phys. Rev. Lett. 112, 156801 (2014).

    Article  ADS  Google Scholar 

  69. Vanhala, T. I. et al. Topological phase transitions in the repulsively interacting Haldane-Hubbard model. Phys. Rev. Lett. 116, 225305 (2016).

    Article  ADS  Google Scholar 

  70. Stenzel, L., Hayward, A. L., Hubig, C., Schollwöck, U. & Heidrich-Meisner, F. Quantum phases and topological properties of interacting fermions in one-dimensional superlattices. Phys. Rev. A 99, 053614 (2019).

    Article  ADS  Google Scholar 

  71. Rachel, S. Interacting topological insulators: a review. Rep. Prog. Phys. 81, 116501 (2018).

    Article  ADS  Google Scholar 

  72. Anisimovas, E., Žlabys, G., Anderson, B. M., Juzeliunas, G. & Eckardt, A. Role of real-space micromotion for bosonic and fermionic Floquet fractional Chern insulators. Phys. Rev. B 91, 245135 (2015).

    Article  ADS  Google Scholar 

  73. Qin, T. & Hofstetter, W. Spectral functions of a time-periodically driven Falicov-Kimball model: real-space Floquet dynamical mean-field theory study. Phys. Rev. B 96, 075134 (2017).

    Article  ADS  Google Scholar 

  74. Plekhanov, K., Roux, G. & Le Hur, K. Floquet engineering of Haldane Chern insulators and chiral bosonic phase transitions. Phys. Rev. B 95, 045102 (2017).

    Article  ADS  Google Scholar 

  75. Keilmann, T., Lanzmich, S., McCulloch, I. & Roncaglia, M. Statistically induced phase transitions and anyons in 1D optical lattices. Nat. Commun. 2, 361 (2011).

    Article  ADS  Google Scholar 

  76. Greschner, S. & Santos, L. Anyon Hubbard model in one-dimensional optical lattices. Phys. Rev. Lett. 115, 053002 (2015).

    Article  ADS  Google Scholar 

  77. Sträter, C., Srivastava, S. C. L. & Eckardt, A. Floquet realization and signatures of one-dimensional anyons in an optical lattice. Phys. Rev. Lett. 117, 205303 (2016).

    Article  ADS  Google Scholar 

  78. Ma, R. et al. Photon-assisted tunneling in a biased strongly correlated Bose gas. Phys. Rev. Lett. 107, 095301 (2011).

    Article  ADS  Google Scholar 

  79. Cardarelli, L., Greschner, S. & Santos, L. Engineering interactions and anyon statistics by multicolor lattice-depth modulations. Phys. Rev. A 94, 023615 (2016).

    Article  ADS  Google Scholar 

  80. Bermudez, A. & Porras, D. Interaction-dependent photon-assisted tunneling in optical lattices: a quantum simulator of strongly-correlated electrons and dynamical Gauge fields. New J. Phys. 17, 103021 (2015).

    Article  ADS  Google Scholar 

  81. Xu, W., Morong, W., Hui, H.-Y, Scarola, V. W. & DeMarco, B. Correlated spin-flip tunneling in a Fermi lattice gas. Phys. Rev. A 98, 023623 (2018).

    Article  ADS  Google Scholar 

  82. Meinert, F., Mark, M. J., Lauber, K., Daley, A. J. & Nägerl, H. C. Floquet engineering of correlated tunneling in the Bose–Hubbard model with ultracold atoms. Phys. Rev. Lett. 116, 205301 (2016).

    Article  ADS  Google Scholar 

  83. Tagliacozzo, L., Celi, A., Zamora, A. & Lewenstein, M. Optical Abelian lattice gauge theories. Ann. Phys. 330, 160–191 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Wiese, U.-J. Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories. Ann. Phys. 525, 777–796 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  85. Zohar, E., Cirac, J. I. & Reznik, B. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 79, 014401 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  86. Görg, F. et al. Realization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matter. Nat. Phys. 15, 1161–1167 (2019).

    Article  Google Scholar 

  87. Schweizer, C. et al. Floquet approach to \({{\mathbb{Z}}}_{2}\) lattice gauge theories with ultracold atoms in optical lattices. Nat. Phys. 15, 1168–1173 (2019).

    Article  Google Scholar 

  88. Clark, L. W. et al. Observation of density-dependent gauge fields in a Bose–Einstein condensate based on micromotion control in a shaken two-dimensional lattice. Phys. Rev. Lett. 121, 030402 (2018).

    Article  ADS  Google Scholar 

  89. Greschner, S., Santos, L. & Poletti, D. Exploring unconventional Hubbard models with doubly modulated lattice gases. Phys. Rev. Lett. 113, 183002 (2014).

    Article  ADS  Google Scholar 

  90. Zhao, H., Knolle, J. & Mintert, F. Engineered nearest-neighbor interactions with doubly modulated optical lattices. Phys. Rev. A 100, 053610 (2019).

    Article  ADS  Google Scholar 

  91. Wang, T. et al. Floquet-induced superfluidity with periodically modulated interactions of two-species hardcore bosons in a one-dimensional optical lattice. Phys. Rev. Res. 2, 013275 (2020).

    Article  ADS  Google Scholar 

  92. Coulthard, J. R., Clark, S. R., Al-Assam, S., Cavalleri, A. & Jaksch, D. Enhancement of superexchange pairing in the periodically driven Hubbard model. Phys. Rev. B 96, 085104 (2017).

    Article  ADS  Google Scholar 

  93. Görg, F. et al. Enhancement and sign change of magnetic correlations in a driven quantum many-body system. Nature 553, 481–485 (2018).

    Article  ADS  Google Scholar 

  94. Sun, N., Zhang, P. & Zhai, H. Resonant-driving-induced ferromagnetism in the Fermi–Hubbard model. Phys. Rev. A 99, 043629 (2019).

    Article  ADS  Google Scholar 

  95. Bilitewski, T. & Cooper, N. R. Scattering theory for Floquet–Bloch states. Phys. Rev. A 91, 033601 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  96. Reitter, M. et al. Interaction dependent heating and atom loss in a periodically driven optical lattice. Phys. Rev. Lett. 119, 200402 (2017).

    Article  ADS  Google Scholar 

  97. Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).

    Article  ADS  Google Scholar 

  98. Rudner, M. S., Lindner, N. H., Berg, E. & Levin, M. Anomalous edge states and the bulk–edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 (2013).

    Google Scholar 

  99. Quelle, A., Weitenberg, C., Sengstock, K. & Smith, C. M. Driving protocol for a Floquet topological phase without static counterpart. New J. Phys. 19, 113010 (2017).

    Article  ADS  Google Scholar 

  100. Mukherjee, S. et al. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice. Nat. Commun. 8, 13918 (2017).

    Article  ADS  Google Scholar 

  101. Maczewsky, L. J., Zeuner, J. M., Nolte, S. & Szameit, A. Observation of photonic anomalous Floquet topological insulators. Nat. Commun. 8, 13756 (2017).

    Article  ADS  Google Scholar 

  102. Wintersperger, K. et al. Realization of an anomalous Floquet topological system with ultracold atoms. Nat. Phys. 16, 1058–1063 (2020).

    Article  Google Scholar 

  103. Potter, A. C., Morimoto, T. & Vishwanath, A. Classification of interacting topological Floquet phases in one dimension. Phys. Rev. X 6, 041001 (2016).

    Google Scholar 

  104. Roy, R. & Harper, F. Periodic table for Floquet topological insulators. Phys. Rev. B 96, 155118 (2017).

    Article  ADS  Google Scholar 

  105. D’Alessio, L. & Rigol, M. Long-time behavior of isolated periodically driven interacting lattice systems. Phys. Rev. X 4, 041048 (2014).

    Google Scholar 

  106. Bukov, M., Heyl, M., Huse, D. A. & Polkovnikov, A. Heating and many-body resonances in a periodically driven two-band system. Phys. Rev. B 93, 155132 (2016).

    Article  ADS  Google Scholar 

  107. Mori, T., Ikeda, T. N., Kaminishi, E. & Ueda, M. Thermalization and prethermalization in isolated quantum systems: a theoretical overview. J. Phys. B 51, 112001 (2018).

    Article  ADS  Google Scholar 

  108. Seetharam, K., Titum, P., Kolodrubetz, M. & Refael, G. Absence of thermalization in finite isolated interacting Floquet systems. Phys. Rev. B 97, 014311 (2018).

    Article  ADS  Google Scholar 

  109. Boulier, T. et al. Parametric heating in a 2D periodically driven bosonic system: beyond the weakly interacting regime. Phys. Rev. X 9, 011047 (2019).

    Google Scholar 

  110. Wintersperger, K. et al. Parametric instabilities of interacting bosons in periodically driven 1D optical lattices. Phys. Rev. X 10, 011030 (2020).

    Google Scholar 

  111. Messer, M. et al. Floquet dynamics in driven Fermi–Hubbard systems. Phys. Rev. Lett. 121, 233603 (2018).

    Article  ADS  Google Scholar 

  112. Singh, K. et al. Quantifying and controlling prethermal nonergodicity in interacting Floquet matter. Phys. Rev. X 9, 041021 (2019).

    Google Scholar 

  113. Rubio-Abadal, A. et al. Floquet prethermalization in a Bose–Hubbard system. Phys. Rev. X 10, 021044 (2020).

    Google Scholar 

  114. Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  115. Potirniche, I.-D., Potter, A. C., Schleier-Smith, M., Vishwanath, A. & Yao, N. Y. Floquet symmetry-protected topological phases in cold-atom systems. Phys. Rev. Lett. 119, 123601 (2017).

    Article  ADS  Google Scholar 

  116. Viebahn, K. et al. Suppressing dissipation in a Floquet–Hubbard system. Phys. Rev. X 11, 011057 (2021).

    Google Scholar 

  117. Sacha, K. & Zakrzewski, J. Time crystals: a review. Rep. Prog. Phys. 81, 016401 (2018).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 802701 and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via Research Unit FOR 2414 ‘Artificial gauge fields and interacting topological phases in ultracold atoms’ under project number 277974659 and via the SFB 925 ‘Light induced dynamics and control of correlated quantum systems’ under project number 170620586.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Weitenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weitenberg, C., Simonet, J. Tailoring quantum gases by Floquet engineering. Nat. Phys. 17, 1342–1348 (2021). https://doi.org/10.1038/s41567-021-01316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01316-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing