Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A charge-density-wave topological semimetal

A Publisher Correction to this article was published on 18 January 2021

This article has been updated

Abstract

Topological physics and strong electron–electron correlations in quantum materials are typically studied independently. However, there have been rapid recent developments in quantum materials in which topological phase transitions emerge when the single-particle band structure is modified by strong interactions. Here we demonstrate that the room-temperature phase of (TaSe4)2I is a Weyl semimetal with 24 pairs of Weyl nodes. Owing to its quasi-one-dimensional structure, (TaSe4)2I also hosts an established charge-density wave instability just below room temperature. We show that the charge-density wave in (TaSe4)2I couples the bulk Weyl points and opens a bandgap. The correlation-driven topological phase transition in (TaSe4)2I provides a route towards observing condensed-matter realizations of axion electrodynamics in the gapped regime, topological chiral response effects in the semimetallic phase, and represents an avenue for exploring the interplay of correlations and topology in a solid-state material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure, 3D bulk and 2D surface Brillouin zones and electronic structure of (TaSe4)2I.
Fig. 2: The distribution of FSWPs in the first bulk BZ.
Fig. 3: The surface states of (TaSe4)2I terminated in the experimentally favoured35 (110) direction, (001) direction and (100) direction.
Fig. 4: XRD data for the CDW phase of (TaSe4)2I.
Fig. 5: The (001) projection of the bulk Fermi surface of (TaSe4)2I and the electronic susceptibility calculated from first principles.

Similar content being viewed by others

Data availability

The source data for all of the figures in this work are available at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FSRRE4. All other data supporting the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The source code for the calculations performed in this work is available from the corresponding authors upon reasonable request.

Change history

References

  1. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  2. Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  3. Huang, S.-M. et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

    Article  ADS  Google Scholar 

  4. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  5. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  ADS  Google Scholar 

  6. Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015).

    Article  Google Scholar 

  7. Wang, Z. et al. MoTe2: a type-II Weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).

    Article  ADS  Google Scholar 

  8. Sun, Y., Wu, S.-C., Ali, M. N., Felser, C. & Yan, B. Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 92, 161107 (2015).

    Article  ADS  Google Scholar 

  9. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    Article  ADS  Google Scholar 

  10. Jiang, J. et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8, 13973 (2017).

    Article  ADS  Google Scholar 

  11. Vafek, O. & Vishwanath, A. Dirac fermions in solids: from high-Tc cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5, 83–112 (2014).

    Article  ADS  Google Scholar 

  12. Wang, Z. et al. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117, 236401 (2016).

    Article  ADS  Google Scholar 

  13. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  14. Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 88, 125427 (2013).

    Article  ADS  Google Scholar 

  15. Wieder, B. J., Kim, Y., Rappe, A. M. & Kane, C. L. Double Dirac semimetals in three dimensions. Phys. Rev. Lett. 116, 186402 (2016).

    Article  ADS  Google Scholar 

  16. Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  17. Schröter, N. B. M. et al. Chiral topological semimetal with multifold band crossings and long Fermi arcs. Nat. Phys. 15, 759–765 (2019).

    Article  Google Scholar 

  18. Takane, D. et al. Observation of chiral fermions with a large topological charge and associated Fermi-arc surface states in CoSi. Phys. Rev. Lett. 122, 076402 (2019).

    Article  ADS  Google Scholar 

  19. Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).

    Article  ADS  Google Scholar 

  20. Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).

    Article  ADS  Google Scholar 

  21. Schröter, N. B. M. et al. Observation and control of maximal Chern numbers in a chiral topological semimetal. Science 369, 179–183 (2020).

    Article  ADS  Google Scholar 

  22. Inoue, H. et al. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal. Science 351, 1184–1187 (2016).

    Article  ADS  Google Scholar 

  23. Zheng, H. et al. Atomic-scale visualization of quantum interference on a Weyl semimetal surface by scanning tunneling microscopy. ACS Nano 10, 1378–1385 (2016).

    Article  Google Scholar 

  24. Sun, Y., Zhang, Y., Felser, C. & Yan, B. Strong intrinsic spin Hall effect in the TaAs family of Weyl semimetals. Phys. Rev. Lett. 117, 146403 (2016).

    Article  ADS  Google Scholar 

  25. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  26. Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).

    Article  ADS  Google Scholar 

  27. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article  ADS  Google Scholar 

  28. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological invariants for the Fermi surface of a time-reversal-invariant superconductor. Phys. Rev. B 81, 134508 (2010).

    Article  ADS  Google Scholar 

  29. Li, Y. & Haldane, F. D. M. Topological nodal Cooper pairing in doped Weyl metals. Phys. Rev. Lett. 120, 067003 (2018).

    Article  ADS  Google Scholar 

  30. Li, Y. & Wu, C. The J-triplet Cooper pairing with magnetic dipolar interactions. Sci. Rep. 2, 392 (2012).

    Article  ADS  Google Scholar 

  31. Bobrow, E., Sun, C. & Li, Y. Monopole charge density wave states in Weyl semimetals. Phys. Rev. Res. 2, 012078 (2020).

    Article  Google Scholar 

  32. Wang, Z. & Zhang, S.-C. Chiral anomaly, charge density waves, and axion strings from Weyl semimetals. Phys. Rev. B 87, 161107 (2013).

    Article  ADS  Google Scholar 

  33. You, Y., Cho, G. Y. & Hughes, T. L. Response properties of axion insulators and Weyl semimetals driven by screw dislocations and dynamical axion strings. Phys. Rev. B 94, 085102 (2016).

    Article  ADS  Google Scholar 

  34. Gressier, P., Guemas, L. & Meerschaut, A. Preparation and structure of ditantalum iodide octaselenide, Ta2ISe8. Acta Crystallogr. B 38, 2877–2879 (1982).

    Article  Google Scholar 

  35. Tournier-Colletta, C. et al. Electronic instability in a zero-gap semiconductor: the charge-density wave in \({({\text{TaSe}}_{4})}_{2}\,\text{I}\,\). Phys. Rev. Lett. 110, 236401 (2013).

  36. Li, X.-P. et al. Type-III Weyl semimetals and its materialization. Preprint at https://arxiv.org/pdf/1909.12178.pdf (2019).

  37. Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

    Article  ADS  Google Scholar 

  38. Chang, G. et al. Unconventional chiral fermions and large topological Fermi arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017).

    Article  ADS  Google Scholar 

  39. Cava, R. J., Littlewood, P., Fleming, R. M., Dunn, R. G. & Rietman, E. A. Low-frequency dielectric response of the charge-density wave in \({({\text{TaSe}}_{4})}_{2}\,\text{I}\,\). Phys. Rev. B 33, 2439–2443 (1986).

  40. Maki, M., Kaiser, M., Zettl, A. & Grüner, G. Charge density wave transport in a novel inorganic chain compound, \({({\text{TaSe}}_{4})}_{2}\,\text{I}\,\). Solid State Commun. 46, 497–500 (1983).

  41. Zhang, Y., Lin, L.-F., Moreo, A., Dong, S. & Dagotto, E. First-principles study of the low-temperature charge density wave phase in the quasi-one-dimensional Weyl chiral compound \({({\text{TaSe}}_{4})}_{2}\,\text{I}\,\). Phys. Rev. B 101, 174106 (2020).

  42. Inorganic Crystal Structure Database (ICSD) (Fachinformationszentrum Karlsruhe, 2015).

  43. Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    Article  ADS  Google Scholar 

  44. Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).

    Article  ADS  Google Scholar 

  45. Liu, Q.-B., Qian, Y., Fu, H.-H. & Wang, Z. Symmetry-enforced Weyl phonons. npj Comput. Mater. 6, 1–6 (2020).

    Article  Google Scholar 

  46. Huang, S.-M. et al. New type of Weyl semimetal with quadratic double Weyl fermions. Proc. Natl Acad. Sci. USA 113, 1180–1185 (2016).

    Article  ADS  Google Scholar 

  47. Tang, P., Zhou, Q. & Zhang, S.-C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).

    Article  ADS  Google Scholar 

  48. Lorenzo, J. E. et al. A neutron scattering study of the quasi-one-dimensional conductor (TaSe4)2I. J. Phys. Condens. Matter 10, 5039–5068 (1998).

    Article  ADS  Google Scholar 

  49. Fujishita, H., Sato, M. & Hoshino, S. Incommensurate superlattice reflections in quasi one dimensional conductors, (MSe4)2I (M = Ta and Nb). Solid State Commun. 49, 313–316 (1984).

    Article  ADS  Google Scholar 

  50. Lee, K.-B., Davidov, D. & Heeger, A. X-ray diffraction study of the CDW phase in (TaSe4)2I: determination of the CDW modulation amplitude. Solid State Commun. 54, 673–677 (1985).

    Article  ADS  Google Scholar 

  51. Johannes, M. D. & Mazin, I. I. Fermi surface nesting and the origin of charge density waves in metals. Phys. Rev. B 77, 165135 (2008).

    Article  ADS  Google Scholar 

  52. Gooth, J. et al. Axionic charge-density wave in the Weyl semimetal \({({\text{TaSe}}_{4})}_{2}\,\text{I}\,\). Nature 575, 315–319 (2019).

  53. Wieder, B. J., Lin, K.-S. & Bradlyn, B. Axionic band topology in inversion-symmetric Weyl-charge-density waves. Phys. Rev. Res. 2, 042010(R) (2020).

    Article  Google Scholar 

  54. Yu, J., Wieder, B. J. & Liu, C.-X. Dynamical piezomagnetic effect in time-reversal invariant Weyl semimetals with axionic charge-density waves. Preprint at https://arxiv.org/pdf/2008.10620.pdf (2020).

  55. Fang, C. & Fu, L. New classes of topological crystalline insulators having surface rotation anomaly. Sci. Adv. 5, eaat2374 (2019).

    Article  ADS  Google Scholar 

  56. Koepernik, K. & Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 59, 1743–1757 (1999).

    Article  ADS  Google Scholar 

  57. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  58. Sancho, M. P. L., Sancho, J. M. L. & Rubio, J. Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F 14, 1205–1215 (1984).

    Article  ADS  Google Scholar 

  59. Sancho, M. P. L., Sancho, J. M. L., Sancho, J. M. L. & Rubio, J. Highly convergent schemes for the calculation of bulk and surface green functions. J. Phys. F 15, 851–858 (1985).

    Article  ADS  Google Scholar 

  60. Gressier, P., Meerschaut, A., Guemas, L., Rouxel, J. & Monceau, P. Characterization of the new series of quasi one-dimensional compounds (MX4)nY (M = Nb, Ta; X = S, Se; Y = Br, I). J. Solid State Chem. 51, 141–151 (1984).

    Article  ADS  Google Scholar 

  61. Gressier, P., Whangbo, M. H., Meerschaut, A. & Rouxel, J. Electronic structures of transition-metal tetrachalcogenides (MSe4)nI (M = Nb, Ta). Inorg. Chem. 23, 1221–1228 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B. Bradlyn, K. Franke, Y. Hu and J. C. Y. Teo for helpful discussions. The first-principles calculations of the electronic structure, electronic susceptibility and quasiparticle interference patterns of (TaSe4)2I were supported by DOE grant no. DE-SC0016239. B.J.W. and B.A.B. were additionally supported by NSF EAGER grant no. DMR 1643312, NSF-MRSEC grants nos. DMR-2011750 and DMR-142051, Simons Investigator grant no. 404513, ONR grants nos. N00014-14-1-0330 and N00014-20-1-2303, the BSF Israel US Foundation grant no. 2018226, the Packard Foundation, the Schmidt Fund for Innovative Research and a Guggenheim Fellowship from the John Simon Guggenheim Memorial Foundation. Z.W. was supported by the National Natural Science Foundation of China (grant no. 11974395), the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS; grant no. XDB33000000), the Center for Materials Genome, and the CAS Pioneer Hundred Talents Program. H.L.M. acknowledges financial support from DFG through the priority program SPP1666 (Topological Insulators). Technical support by F. Weiss is gratefully acknowledged. H.L.M. thanks the staff of the ESRF for their hospitality during his stay in Grenoble, and additionally acknowledges helpful interactions with G. Castro, J. Rubio-Zuazo, K. Mohseni and R. Felici during experiments performed at the ESRF. W.S., Y.S., Y.Z. and C.F. were supported by ERC Advanced grant no. 291472 ‘Idea Heusler’, ERC Advanced grant no. 742068–TOPMAT and Deutsche Forschungsgemeinschaft DFG under SFB 1143. W.S. additionally acknowledges support from the Shanghai high-repetition-rate XFEL and extreme light facility (SHINE). Y.Q. acknowledges support by the National Natural Science Foundation of China (grant nos. U1932217 and 11974246). Some of the calculations were carried out at the HPC Platform of ShanghaiTech University Library and Information Services and at the School of Physical Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

This project was conceived by Z.W. and B.A.B. The Weyl semimetal phase of (TaSe4)2I was discovered by W.S., Z.W., C.F. and B.A.B. The first-principles calculations of the high-temperature electronic structure and electronic susceptibility of (TaSe4)2I were performed by W.S., Y.Z., Y.S. and Z.W. The quasiparticle interference patterns of the surface Fermi arcs were computed by B.J.W., W.S. and Z.W. The FPLO package and the Wannier function interface for first-principles calculations were written by K.K. The theoretical analysis was performed by B.J.W., Z.W. and B.A.B. The single-crystal bulk samples were synthesized by Y.Q. The XRD experiments were performed by H.L.M., J.J., P.W. and S.P. The ARPES experiments were performed by Y.L., L.S., L.Y. and Y.C. The manuscript was written by B.J.W., W.S., H.L.M., Z.W. and B.A.B., with help from all authors.

Corresponding authors

Correspondence to B. Andrei Bernevig or Zhijun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Emil Bergholtz, Congjun Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion A–I, Figs. 1–16 and Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Wieder, B.J., Meyerheim, H.L. et al. A charge-density-wave topological semimetal. Nat. Phys. 17, 381–387 (2021). https://doi.org/10.1038/s41567-020-01104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-01104-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing