Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamics of soliton crystals in optical microresonators

Abstract

Dissipative Kerr solitons in optical microresonators combine nonlinear optical physics with photonic-integrated technologies. They are promising for a number of applications ranging from optical coherent communications to astrophysical spectrometer calibration, and are also of fundamental interest to the physical sciences. Dissipative Kerr solitons can form a variety of stable states, including breathers and multiple-soliton formations. Among these states, soliton crystals stand out: temporally ordered ensembles of soliton pulses, which are regularly arranged by a modulation of the continuous-wave intracavity driving field. To date, however, the dynamics of soliton crystals and their defect-free generation remain unexplored. Here, we show that the chaotic operating regimes of driven optical microresonators significantly impact the dynamics of soliton crystals. We realize deterministic generation of perfect soliton crystal states, which correspond to a stable, defect-free lattice of intracavity optical pulses. We reveal a critical pump power, below which the stochastic process of soliton excitation abruptly becomes deterministic, which enables faultless, device-independent access to perfect soliton crystals. We also demonstrate the switching of these states and its relation to the regime of transient chaos. Finally, we report on other dynamical phenomena observed in soliton crystals including the formation of breathers, transitions between perfect soliton crystals, their melting and recrystallization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: PSCs in Si3N4 microresonators.
Fig. 2: Universal approach to the excitation of PSC states.
Fig. 3: Controllable translations and switching of PSC states.
Fig. 4: Diverse dynamics of PSC states.

Data availability

The data used to produce the plots within this paper are available at https://doi.org/10.5281/zenodo.2809645. All other data used in this study are available from the corresponding authors on reasonable request.

Code availability

The code used to produce the plots within this paper is available at https://doi.org/10.5281/zenodo.2809645.

References

  1. 1.

    Haelterman, M., Trillo, S. & Wabnitz, S. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun. 91, 401–407 (1992).

    ADS  Article  Google Scholar 

  2. 2.

    Akhmediev, N. N. & Ankiewicz, A. Solitons Around Us: Integrable, Hamiltonian and Dissipative Systems 105–126 (Springer, 2003).

  3. 3.

    Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  4. 4.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    ADS  Article  Google Scholar 

  5. 5.

    Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Raja, A. S. et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun. 10, 680–687 (2019).

    ADS  Article  Google Scholar 

  7. 7.

    Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    ADS  Article  Google Scholar 

  8. 8.

    Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    ADS  Article  Google Scholar 

  9. 9.

    Jost, J. D. et al. Counting the cycles of light using a self-referenced optical microresonator. Optica 2, 706–711 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Yu, M. et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun. 9, 1869–1876 (2018).

    ADS  Article  Google Scholar 

  12. 12.

    Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    ADS  Article  Google Scholar 

  13. 13.

    Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    ADS  Article  Google Scholar 

  14. 14.

    Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    ADS  Article  Google Scholar 

  16. 16.

    Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31–36 (2019).

    ADS  Article  Google Scholar 

  17. 17.

    Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. 13, 25–30 (2019).

    ADS  Article  Google Scholar 

  18. 18.

    Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–677 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Wang, Y. et al. Universal mechanism for the binding of temporal cavity solitons. Optica 4, 855–863 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Taheri, H., Matsko, A. B. & Maleki, L. Optical lattice trap for Kerr solitons. Eur. Phys. J. D 71, 153–165 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Wang, W. et al. Robust soliton crystals in a thermally controlled microresonator. Opt. Lett. 43, 2002–2005 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Karpov, M. et al. Dynamics of soliton crystals in optical microresonators. In Conference on Lasers and Electro-Optics FTu1D.2 (Optical Society of America, 2017).

  23. 23.

    Lu, Z. et al. Raman self-frequency-shift of soliton crystal in a high index doped silica micro-ring resonator. Opt. Mater. Express 8, 2662–2669 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Luke, K., Dutt, A., Poitras, C. B. & Lipson, M. Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express 21, 22829–22833 (2013).

    ADS  Article  Google Scholar 

  25. 25.

    Pfeiffer, M. H. P. et al. Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica 3, 20–25 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Kordts, A., Pfeiffer, M. H. P., Guo, H., Brasch, V. & Kippenberg, T. J. Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation. Opt. Lett. 41, 452–455 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Grudinin, I. S. et al. High-contrast Kerr frequency combs. Optica 4, 434–437 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

    ADS  Article  Google Scholar 

  29. 29.

    Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94–102 (2017).

    Article  Google Scholar 

  30. 30.

    Anderson, M., Leo, F., Coen, S., Erkintalo, M. & Murdoch, S. G. Observations of spatiotemporal instabilities of temporal cavity solitons. Optica 3, 1071–1074 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Lu, Z. et al. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Adv. 9, 025314–025319 (2019).

    ADS  Article  Google Scholar 

  32. 32.

    Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

    ADS  Article  Google Scholar 

  33. 33.

    Xue, X. et al. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon. Rev. 9, L23–L28 (2015).

    Article  Google Scholar 

  34. 34.

    Lucas, E., Karpov, M., Guo, H., Gorodetsky, M. & Kippenberg, T. Breathing dissipative solitons in optical microresonators. Nat. Commun. 8, 736–746 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    ADS  Article  Google Scholar 

  36. 36.

    Sun, C., Askham, T. & Kutz, J. N. Stability and dynamics of microring combs: elliptic function solutions of the Lugiato–Lefever equation. J. Opt. Soc. Am. B 35, 1341–1353 (2018).

    ADS  Article  Google Scholar 

  37. 37.

    Del’Haye, P., Arcizet, O., Gorodetsky, M. L., Holzwarth, R. & Kippenberg, T. J. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nat. Photon. 3, 529–533 (2009).

    ADS  Article  Google Scholar 

  38. 38.

    Herr, T. et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113, 123901–123906 (2014).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge fruitful discussions with E. Lucas and M. Anderson. This publication was supported by the Air Force Office of Scientific Research, Air Force Material Command, USAF under award no. FA9550-15-1-0099 and by funding from the European Union’s Horizon 2020 Marie Sklodowska-Curie IF grant agreement no. 753749 (SOLISYNTH). This publication was supported by contract D18AC00032 (DRINQS) from the Defense Advanced Research Projects Agency, Defense Sciences Office. M.K. acknowledges the support from the European Space Technology Centre with ESA contract no. 4000116145/16/NL/MH/GM. Si3N4 samples were fabricated and grown in the Center of MicroNanoTechnology (CMi) at EPFL.

Author information

Affiliations

Authors

Contributions

M.K. developed the idea, designed and performed experiments and simulations, and processed the data. M.H.P.P. fabricated samples with the assistance of J.L. M.K. wrote the manuscript with input from T.J.K., H.G. and W.W. T.J.K. supervised the project.

Corresponding author

Correspondence to Tobias J. Kippenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and notes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karpov, M., Pfeiffer, M.H.P., Guo, H. et al. Dynamics of soliton crystals in optical microresonators. Nat. Phys. 15, 1071–1077 (2019). https://doi.org/10.1038/s41567-019-0635-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing