Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Realization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matter

Abstract

Gauge fields that appear in models of high-energy and condensed-matter physics are dynamical quantum degrees of freedom due to their coupling to matter fields. Since the dynamics of these strongly correlated systems is hard to compute, it was proposed to implement this basic coupling mechanism in quantum simulation platforms with the ultimate goal to emulate lattice gauge theories. Here, we realize the fundamental ingredient for a density-dependent gauge field acting on ultracold fermions in an optical lattice by engineering non-trivial Peierls phases that depend on the site occupations. We propose and implement a Floquet scheme that relies on breaking time-reversal symmetry by driving the lattice simultaneously at two frequencies that are resonant with the on-site interactions. This induces density-assisted tunnelling processes that are controllable in amplitude and phase. We demonstrate techniques in a Hubbard dimer to quantify the amplitude and to directly measure the Peierls phase with respect to the single-particle hopping. The tunnel coupling features two distinct regimes as a function of the modulation amplitudes, which can be characterized by a \({\Bbb Z}_2\)-invariant. Moreover, we provide a full tomography of the winding structure of the Peierls phase around a Dirac point that appears in the driving parameter space.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental set-up and driving scheme.
Fig. 2: Schemes to measure the absolute value and phase of the effective tunnel coupling.
Fig. 3: Gap closing in K1K2 parameter space.
Fig. 4: Dirac point and Peierls phase vortex.

Data availability

All data files are available from the corresponding author upon request. Source data for Figs. 24 and Supplementary Figs. 1d and 7 are provided in the Supplementary information.

Code availability

The source code for the fit of the Ramsey fringes is available from the corresponding author upon request.

References

  1. 1.

    Goldman, N., Juzeliunas, G., Öhberg, P. & Spielman, I. B. Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014).

    ADS  Article  Google Scholar 

  2. 2.

    Cooper, N. R., Dalibard, J. & Spielman, I. B. Topological bands for ultracold atoms. Rev. Mod. Phys. 91, 015005 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Cooper, N. R. Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    Lin, Y.-J., Compton, R. L., Jiménez-García, K., Porto, J. V. & Spielman, I. B. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009).

    ADS  Article  Google Scholar 

  5. 5.

    Bukov, M., D’Alessio, L. & Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64, 139–226 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Eckardt, A. Colloquium: atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Aidelsburger, M. et al. Experimental realization of strong effective magnetic fields in an optical lattice. Phys. Rev. Lett. 107, 255301 (2011).

    ADS  Article  Google Scholar 

  8. 8.

    Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Struck, J. et al. Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields. Nat. Phys. 9, 738–743 (2013).

    Article  Google Scholar 

  10. 10.

    Jotzu, G. et al. Experimental realisation of the topological Haldane model. Nature 515, 237–240 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Cheng, T.-P. & Li, L.-F. Gauge Theory of Elementary Particle Physics (Oxford Univ. Press, 1991).

  12. 12.

    Levin, M. & Wen, X. G. Colloquium: photons and electrons as emergent phenomena. Rev. Mod. Phys. 77, 871–879 (2005).

    ADS  Article  Google Scholar 

  13. 13.

    Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2017).

    ADS  Article  Google Scholar 

  14. 14.

    Wiese, U. J. Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories. Ann. Phys. 525, 777–796 (2013).

    MathSciNet  Article  Google Scholar 

  15. 15.

    Zohar, E., Cirac, J. I. & Reznik, B. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 79, 014401 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Dalmonte, M. & Montangero, S. Lattice gauge theory simulations in the quantum information era. Contemp. Phys. 57, 388–412 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Martinez, E. A. et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534, 516–519 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Edmonds, M. J., Valiente, M., Juzeliunas, G., Santos, L. & Öhberg, P. Simulating an interacting gauge theory with ultracold Bose gases. Phys. Rev. Lett. 110, 085301 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Clark, L. W. et al. Observation of density-dependent gauge fields in a Bose–Einstein condensate based on micromotion control in a shaken two-dimensional lattice. Phys. Rev. Lett. 121, 030402 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Keilmann, T., Lanzmich, S., McCulloch, I. & Roncaglia, M. Statistically induced phase transitions and anyons in 1D optical lattices. Nat. Commun. 2, 361–367 (2011).

    ADS  Article  Google Scholar 

  21. 21.

    Greschner, S., Sun, G., Poletti, D. & Santos, L. Density-dependent synthetic gauge fields using periodically modulated interactions. Phys. Rev. Lett. 113, 215303 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    Greschner, S. & Santos, L. Anyon hubbard model in one-dimensional optical lattices. Phys. Rev. Lett. 115, 053002 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Bermudez, A. & Porras, D. Interaction-dependent photon-assisted tunneling in optical lattices: a quantum simulator of strongly-correlated electrons and dynamical gauge fields. New J. Phys. 17, 103021 (2015).

    ADS  Article  Google Scholar 

  24. 24.

    Cardarelli, L., Greschner, S. & Santos, L. Engineering interactions and anyon statistics by multicolor lattice-depth modulations. Phys. Rev. A 94, 023615 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Sträter, C., Srivastava, S. C. L. & Eckardt, A. Floquet realization and signatures of one-dimensional anyons in an optical lattice. Phys. Rev. Lett. 117, 205303 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Barbiero, L. et al. Coupling ultracold matter to dynamical gauge fields in optical lattices: from flux-attachment to 2 lattice gauge theories. Preprint at https://arxiv.org/abs/1810.02777 (2018).

  27. 27.

    Struck, J. et al. Tunable gauge potential for neutral and spinless particles in driven optical lattices. Phys. Rev. Lett. 108, 225304 (2012).

    ADS  Article  Google Scholar 

  28. 28.

    Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004).

    ADS  Article  Google Scholar 

  29. 29.

    Jördens, R., Strohmaier, N., Günter, K. J., Moritz, H. & Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008).

    ADS  Article  Google Scholar 

  30. 30.

    Greif, D., Tarruell, L., Uehlinger, T., Jördens, R. & Esslinger, T. Probing nearest-neighbor correlations of ultracold fermions in an optical lattice. Phys. Rev. Lett. 106, 145302 (2011).

    ADS  Article  Google Scholar 

  31. 31.

    Chen, Y.-A. et al. Controlling correlated tunneling and superexchange interactions with ac-driven optical lattices. Phys. Rev. Lett. 107, 210405 (2011).

    ADS  Article  Google Scholar 

  32. 32.

    Ma, R. et al. Photon-assisted tunneling in a biased strongly correlated Bose gas. Phys. Rev. Lett. 107, 095301 (2011).

    ADS  Article  Google Scholar 

  33. 33.

    Meinert, F., Mark, M. J., Lauber, K., Daley, A. J. & Nägerl, H.-C. Floquet engineering of correlated tunneling in the Bose–Hubbard model with ultracold atoms. Phys. Rev. Lett. 116, 205301 (2016).

    ADS  Article  Google Scholar 

  34. 34.

    Desbuquois, R. et al. Controlling the Floquet state population and observing micromotion in a periodically driven two-body quantum system. Phys. Rev. A 96, 053602 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Görg, F. et al. Enhancement and sign change of magnetic correlations in a driven quantum many-body system. Nature 553, 481–485 (2018).

    ADS  Article  Google Scholar 

  36. 36.

    Messer, M. et al. Floquet dynamics in driven Fermi–Hubbard systems. Phys. Rev. Lett. 121, 233603 (2018).

    ADS  Article  Google Scholar 

  37. 37.

    Xu, W., Morong, W., Hui, H. Y., Scarola, V. W. & DeMarco, B. Correlated spin-flip tunneling in a Fermi lattice gas. Phys. Rev. A 98, 023623 (2018).

    ADS  Article  Google Scholar 

  38. 38.

    Sandholzer, K. et al. Quantum simulation meets nonequilibrium DMFT: analysis of a periodically driven, strongly correlated Fermi–Hubbard model. Preprint at https://arxiv.org/abs/1811.12826 (2018).

  39. 39.

    Schweizer, C. et al. Floquet approach to 2 lattice gauge theories with ultracold atoms in optical lattices. Nat. Phys. https://doi.org/10.1038/s41567-019-0649-7 (2019).

  40. 40.

    Jotzu, G. et al. Creating state-dependent lattices for ultracold fermions by magnetic gradient modulation. Phys. Rev. Lett. 115, 073002 (2015).

    ADS  Article  Google Scholar 

  41. 41.

    Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G. & Esslinger, T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 483, 302–305 (2012).

    ADS  Article  Google Scholar 

  42. 42.

    Greif, D., Uehlinger, T., Jotzu, G., Tarruell, L. & Esslinger, T. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science 340, 1307–1310 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Barbiero, A. Bermudez, A. Eckardt, N. Goldman, F. Grusdt, Y. Murakami, M. Rizzi, L. Santos, K. Viebahn, P. Werner and O. Zilberberg for insightful discussions, and K. Viebahn and O. Zilberberg for a careful reading of the manuscript. We acknowledge SNF (projects nos. 169320 and 182650), NCCR-QSIT, QUIC (Swiss State Secretary for Education, Research and Innovation contract no. 15.0019) and ERC advanced grant TransQ (project no. 742579) for funding.

Author information

Affiliations

Authors

Contributions

The data were measured and analysed by F.G., K.S. and J.M. The theoretical framework and measurement scheme were developed by F.G. All work was supervised by T.E. All authors contributed to planning the experiment, discussions and preparation of the manuscript.

Corresponding author

Correspondence to Tilman Esslinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text and Figs. 1–7.

Supplementary Data 1

Source data for Fig. 2.

Supplementary Data 2

Source data for Fig. 3.

Supplementary Data 3

Source data for Fig. 4.

Supplementary Data 4

Source data for Supplementary Fig. 1d.

Supplementary Data 5

Source data for Supplementary Fig. 7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Görg, F., Sandholzer, K., Minguzzi, J. et al. Realization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matter. Nat. Phys. 15, 1161–1167 (2019). https://doi.org/10.1038/s41567-019-0615-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing