Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identifying quantum phase transitions using artificial neural networks on experimental data

Abstract

Machine-learning techniques such as artificial neural networks are currently revolutionizing many technological areas and have also proven successful in quantum physics applications1,2,3,4. Here, we employ an artificial neural network and deep-learning techniques to identify quantum phase transitions from single-shot experimental momentum-space density images of ultracold quantum gases and obtain results that were not feasible with conventional methods. We map out the complete two-dimensional topological phase diagram of the Haldane model5,6,7 and provide an improved characterization of the superfluid-to-Mott-insulator transition in an inhomogeneous Bose–Hubbard system8,9,10. Our work points the way to unravel complex phase diagrams of general experimental systems, where the Hamiltonian and the order parameters might not be known.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Using a neural network to identify physical phases from experimental images.
Fig. 2: Mapping out a topological phase diagram using a neural network.
Fig. 3: Characterizing the superfluid-to-Mott-insulator transition.

Data availability

Source data for Figs. 2 and 3 are available in the Supplementary information. All data files including onnx files of the trained networks are available from the corresponding author on request.

References

  1. 1.

    Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13, 431–434 (2017).

    Article  Google Scholar 

  2. 2.

    van Nieuwenburg, E. P. L., Liu, Y.-H. & Huber, S. D. Learning phase transitions by confusion. Nat. Phys. 13, 435–439 (2017).

    Article  Google Scholar 

  3. 3.

    Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Gao, X. & Duan, L.-M. Efficient representation of quantum many-body states with deep neural networks. Nat. Commun. 8, 662 (2017).

    ADS  Article  Google Scholar 

  5. 5.

    Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Fläschner, N. et al. Experimental reconstruction of the Berry curvature in a Floquet Bloch band. Science 352, 1091–1094 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid–insulator transition. Phys. Rev. B 40, 546–570 (1989).

    ADS  Article  Google Scholar 

  9. 9.

    Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    ADS  Article  Google Scholar 

  10. 10.

    Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    ADS  Article  Google Scholar 

  11. 11.

    Lewenstein, M. et al. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243–379 (2007).

    ADS  Article  Google Scholar 

  12. 12.

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Article  Google Scholar 

  13. 13.

    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–521 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

    ADS  Article  Google Scholar 

  15. 15.

    Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    ADS  Article  Google Scholar 

  16. 16.

    Ohtsuki, T. & Ohtsuki, T. Deep learning the quantum phase transitions in random two-dimensional electron systems. J. Phys. Soc. Jpn 85, 123706 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Ch’ng, K., Carrasquilla, J., Melko, R. G. & Khatami, E. Machine learning phases of strongly correlated fermions. Phys. Rev. X 7, 031038 (2017).

    Google Scholar 

  18. 18.

    Broecker, P., Carrasquilla, J., Melko, R. G. & Trebst, S. Machine learning quantum phases of matter beyond the fermion sign problem. Sci. Rep. 7, 8823 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Huembeli, P., Dauphin, A. & Wittek, P. Identifying quantum phase transitions with adversarial neural networks. Phys. Rev. B 97, 134109 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Deng, D.-L., Li, X. & Das Sarma, S. Machine learning topological states. Phys. Rev. B 96, 195145 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Zhang, Y. & Kim, E.-A. Quantum loop topography for machine learning. Phys. Rev. Lett. 118, 216401 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Zhang, P., Shen, H. & Zhai, H. Machine learning topological invariants with neural networks. Phys. Rev. Lett. 120, 066401 (2018).

    ADS  Article  Google Scholar 

  23. 23.

    Zhang, Y. et al. Machine learning in electronic-quantum-matter imaging experiments. Nature https://doi.org/10.1038/s41586-019-1319-8 (2019).

    Article  Google Scholar 

  24. 24.

    Wigley, P. B. et al. Fast machine-learning online optimization of ultra-cold-atom experiments. Sci. Rep. 6, 25890 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Pyzh, M., Krönke, S., Weitenberg, C. & Schmelcher, P. Quantum point spread function for imaging trapped few-body systems with a quantum gas microscope. New J. Phys. 21, 053013 (2019).

  26. 26.

    Sorensen, J. J. W. H., Aranburu, M. O., Heinzel, T. & Sherson, J. F. Approaching the quantum speed limit with global-local optimization. Preprint at https://arxiv.org/abs/1802.07521 (2018).

  27. 27.

    Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406(R) (2009).

    ADS  Article  Google Scholar 

  28. 28.

    Tarnowski, M. et al. Measuring topology from dynamics by obtaining the Chern number from a linking number. Nat. Commun. 10, 1728 (2019).

    ADS  Article  Google Scholar 

  29. 29.

    Hauke, P., Lewenstein, M. & Eckardt, A. Tomography of band insulators from quench dynamics. Phys. Rev. Lett. 113, 045303 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2015).

    Article  Google Scholar 

  31. 31.

    Gemelke, N., Zhang, X., Hung, C.-L. & Chin, C. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases. Nature 460, 995–998 (2009).

    ADS  Article  Google Scholar 

  32. 32.

    Becker, C. et al. Ultracold quantum gases in triangular optical lattices. New J. Phys. 12, 065025 (2010).

    ADS  Article  Google Scholar 

  33. 33.

    Teichmann, N., Hinrichs, D. & Holthaus, M. Reference data for phase diagrams of triangular and hexagonal bosonic lattices. Eur. Phys. Lett. 91, 10004 (2010).

    ADS  Article  Google Scholar 

  34. 34.

    Lin, Z., Zhang, J. & Jiang, Y. Quantum phase transitions of ultracold Bose systems in nonrectangular optical lattices. Phys. Rev. A 85, 023619 (2012).

    ADS  Article  Google Scholar 

  35. 35.

    Gerbier, F. et al. Phase coherence of an atomic Mott insulator. Phys. Rev. Lett. 95, 050404 (2005).

    ADS  Article  Google Scholar 

  36. 36.

    Thomas, C. K. et al. Mean-field scaling of the superfluid to Mott insulator transition in a 2d optical superlattice. Phys. Rev. Lett. 119, 100402 (2017).

    ADS  Article  Google Scholar 

  37. 37.

    Broecker, P., Assaad, F. F. & Trebst, S. Quantum phase recognition via unsupervised machine learning. Preprint at https://arxiv.org/abs/1707.00663 (2017).

  38. 38.

    Torlai, G. et al. Neural-network quantum state tomography. Nat. Phys. 14, 447–450 (2018).

    Article  Google Scholar 

  39. 39.

    Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    ADS  Article  Google Scholar 

  40. 40.

    Struck, J. et al. Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996–999 (2011).

    ADS  Article  Google Scholar 

  41. 41.

    Eckardt, A. Colloquium: atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  42. 42.

    Asteria, L. et al. Measuring quantized circular dichroism in ultracold topological matter. Nat. Phys. 15, 449–454 (2019).

    ADS  Article  Google Scholar 

  43. 43.

    Nielsen, M. A. Neural Networks and Deep Learning (Determination Press, 2015).

  44. 44.

    Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2017).

  45. 45.

    Mehta, P. et al. A high-bias, low-variance introduction to Machine Learning for physicists. Phys. Rep. 810, 1–124 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  46. 46.

    Lin, H. W., Tegmark, M. & Rolnik, D. Why does deep and cheap learning work so well? J. Stat. Phys. 168, 1223–1247 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  47. 47.

    Montavon, G., Samek, W. & Müller, K.-R. Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 73, 1–15 (2018).

    MathSciNet  Article  Google Scholar 

  48. 48.

    Sun, N., Yi, J., Zhang, P., Shen, H. & Zhai, H. Deep learning topological invariants of band insulators. Phys. Rev. B 98, 085402 (2018).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Lewenstein for stimulating our interest in machine learning of quantum phase transitions and A. Dauphin and J. Thywissen for useful discussions. The computational resources were provided by the PHYSnet-Rechenzentrum of Universität Hamburg and we thank B. Krause-Kyora and M. Stieben for technical support. We acknowledge financial support from the Deutsche Forschungsgemeinschaft via the Research Unit FOR 2414 and the Collaborative Research Center SFB 925. B.S.R. acknowledges financial support from the European Commission (Marie Skłodowska Curie Fellowship ISOTOP, grant number 652837).

Author information

Affiliations

Authors

Contributions

B.S.R., M.T. and L.A. took the experimental data on the Haldane system. C.B. took the experimental data on the Hubbard system. N.K., B.S.R., M.T., L.A. and C.B. evaluated and analysed the data. M.T., N.K., N.F. and L.A. performed numerical calculations including the Floquet phase diagram. K.S. and C.W. conceived and supervised the project. All authors substantially contributed to the interpretation of the results and the writing of the manuscript.

Corresponding author

Correspondence to Klaus Sengstock.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–7 and references.

Supplementary Data 1

Source data for Fig. 2b.

Supplementary Data 2

Source data for Fig. 2c.

Supplementary Data 3

Source data for Fig. 2d.

Supplementary Data 4

Source data for Fig. 3b.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rem, B.S., Käming, N., Tarnowski, M. et al. Identifying quantum phase transitions using artificial neural networks on experimental data. Nat. Phys. 15, 917–920 (2019). https://doi.org/10.1038/s41567-019-0554-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing