Polarization and entanglement in baryon–antibaryon pair production in electron–positron annihilation


Particles directly produced at electron–positron colliders, such as the J/ψ meson, decay with relatively high probability into a baryon–antibaryon pair1. For spin-1/2 baryons, the pair can have the same or opposite helicites. A non-vanishing phase ΔΦ between the transition amplitudes to these helicity states results in a transverse polarization of the baryons2,3,4. From the joint angular distribution of the decay products of the baryons, this phase as well as the parameters characterizing the baryon and the antibaryon decays can be determined. Here, we report the measurement of ΔΦ = 42.4 ± 0.6 ± 0.5° using Λ →  and \(\bar \Lambda \to \bar p\pi ^ + ,\bar n\pi ^0\) decays at BESIII. We find a value for the Λ →  decay parameter of α = 0.750 ± 0.009 ± 0.004, 17 ± 3% higher than the current world average, which has been used as input for all Λ polarization measurements since 19785,6. For \(\bar \Lambda \to \bar p\pi ^ +\) we find α+ = −0.758 ± 0.010 ± 0.007, giving ACP = (α + α+)/(α − α+) = −0.006 ± 0.012 ± 0.007, a precise direct test of charge–parity symmetry (CP) violation in Λ decays.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Illustration of the \(e^ + e^ - \to J/\psi \to \Lambda \bar \Lambda\) process.
Fig. 2: An example \(J/\psi \to (\Lambda \to p\pi ^ - )(\bar \Lambda \to \bar p\pi ^ + )\) event in the BESIII detector.
Fig. 3: The polarization signal for \(\Lambda (\bar \Lambda )\) in \(e^ + e^ - \to J/\psi \to \Lambda \bar \Lambda\).

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Kopke, L. & Wermes, N. J/ψ decays. Phys. Rep. 174, 67–227 (1989).

    ADS  Article  Google Scholar 

  2. 2.

    Cabibbo, N. & Gatto, R. Electron positron colliding beam experiments. Phys. Rev. 124, 1577–1595 (1961).

    ADS  Article  Google Scholar 

  3. 3.

    Brodsky, S. J., Carlson, C. E., Hiller, J. R. & Hwang, D. S. Single spin polarization effects and the determination of time-like proton form-factors. Phys. Rev. D 69, 054022 (2004).

    ADS  Article  Google Scholar 

  4. 4.

    Fäldt, G. & Kupsc, A. Hadronic structure functions in the \(e^ + e^ - \to \bar \Lambda \Lambda\) reaction. Phys. Lett. B 772, 16–20 (2017).

    ADS  Article  Google Scholar 

  5. 5.

    Bricman, C. et al. Review of particle properties. Phys. Lett. B 75, 1–250 (1978).

    ADS  Article  Google Scholar 

  6. 6.

    Tanabashi, M. et al. Review of particle physics. Phys. Rev. D 98, 030001 (2018).

    ADS  Article  Google Scholar 

  7. 7.

    Dubnickova, A. Z., Dubnicka, S. & Rekalo, M. P. Investigation of the nucleon electromagnetic structure by polarization effects in \(e^ + e^ - \to N\bar N\) processes. Nuovo Cim. A 109, 241–256 (1996).

    ADS  Article  Google Scholar 

  8. 8.

    Gakh, G. I. & Tomasi-Gustafsson, E. General analysis of polarization phenomena in \(e^ + + e^ - \to N + \bar N\) for axial parametrization of two-photon exchange. Nucl. Phys. A 771, 169–183 (2006).

    ADS  Article  Google Scholar 

  9. 9.

    Czyz, H., Grzelinska, A. & Kuhn, J. H. Spin asymmetries and correlations in lambda-pair production through the radiative return method. Phys. Rev. D 75, 074026 (2007).

    ADS  Article  Google Scholar 

  10. 10.

    Fäldt, G. Entanglement in joint \(\Lambda \bar \Lambda\) decay. Eur. Phys. J. A 51, 74 (2015).

    ADS  Article  Google Scholar 

  11. 11.

    Fäldt, G. Polarization observables in the \(e^ + e^ - \to \bar \Lambda \Lambda\) reaction. Eur. Phys. J. A 52, 141 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Bai, J. Z. et al. Decays of the J/ψ to \(\Lambda \overline \Lambda ,\Lambda \overline \Lambda \gamma\) and \(\Lambda \overline \Lambda ,\Lambda \overline \Lambda \gamma\) final states. Phys. Lett. B 424, 213–218 (1998). Erratum 438, 447 (1998).

    ADS  Article  Google Scholar 

  13. 13.

    Ablikim, M. et al. Measurement of J/ψ decays into \(\Lambda \bar \Lambda \pi ^ + \pi ^ -\). Chin. Phys. C 36, 1031–1039 (2012).

    Article  Google Scholar 

  14. 14.

    Ablikim, M. et al. Study of J/ψ and ψ(3686) decay to \(\Lambda \bar \Lambda\) and \(\Lambda \bar \Lambda\) final states. Phys. Rev. D 95, 052003 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Lee, T. D. & Yang, C.-N. General partial wave analysis of the decay of a hyperon of spin 1/2. Phys. Rev. 108, 1645–1647 (1957).

    ADS  Article  Google Scholar 

  16. 16.

    Tornqvist, N. A. Suggestion for Einstein–Podolsky–Rosen experiments using reactions like \(e^ + e^ - \to \Lambda \bar \Lambda \to \pi ^ - p\pi ^ + \bar p\). Found. Phys. 11, 171–177 (1981).

    ADS  Article  Google Scholar 

  17. 17.

    Hiesmayr, B. C. Limits of quantum information in weak interaction processes of hyperons. Sci. Rep. 5, 11591 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Ablikim, M. et al. Design and construction of the BESIII detector. Nucl. Instrum. Methods A614, 345–399 (2010).

    ADS  Article  Google Scholar 

  19. 19.

    Ablikim, M. et al. Observation of a charged charmonium like structure in \(e^ + e^ - \to \pi ^ + \pi ^ - J/\psi\) at \(\sqrt{s}=4.26\) GeV. Phys. Rev. Lett. 110, 252001 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    Shepherd, M. R., Dudek, J. J. & Mitchell, R. E. Searching for the rules that govern hadron construction. Nature 534, 487–493 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Overseth, O. E. & Roth, R. F. Time reversal invariance in Λ 0 decay. Phys. Rev. Lett. 19, 391–393 (1967).

    ADS  Article  Google Scholar 

  22. 22.

    Cleland, W. E. et al. A measurement of the beta-parameter in the charged nonleptonic decay of the Λ 0 hyperon. Nucl. Phys. B40, 221–254 (1972).

    ADS  Article  Google Scholar 

  23. 23.

    Peterson, V. Z. Analyzing Power of Carbon for High-Energy Polarized Protons Report No. LRL-UCRL-10622 https://escholarship.org/uc/item/7777n2h0 (1963).

  24. 24.

    Besset, D. et al. Proton Carbon analyzing power between 300 MeV and 560 MeV. Nucl. Instrum. Methods 166, 379–389 (1979).

    ADS  Article  Google Scholar 

  25. 25.

    Aprile-Giboni, E. et al. Proton carbon effective analyzing power between 95 MeV and 570 MeV. Nucl. Instrum. Methods 215, 147–157 (1983).

    Article  Google Scholar 

  26. 26.

    Mcnaughton, M. W. et al. The p-C analyzing power between 100 MeV and 750 MeV. Nucl. Instrum. Methods A241, 435–440 (1985).

    ADS  Article  Google Scholar 

  27. 27.

    Overseth, O. E. & Pakvasa, S. Final-state interactions in nonleptonic hyperon decay. Phys. Rev. 184, 1663–1667 (1969).

    ADS  Article  Google Scholar 

  28. 28.

    Olsen, S. et al. Asymmetry parameter for Λ 0 →  0. Phys. Rev. Lett. 24, 843–847 (1970).

    ADS  Article  Google Scholar 

  29. 29.

    Cheng, H.-Y. Status of the ΔI = 1/2 rule in kaon decay. Int. J. Mod. Phys. A4, 495 (1989).

    ADS  Article  Google Scholar 

  30. 30.

    Barnes, P. D. et al. Observables in high statistics measurements of the reaction \(\bar pp \to \bar \Lambda \Lambda\). Phys. Rev. C 54, 1877–1886 (1996).

    ADS  Article  Google Scholar 

  31. 31.

    Donoghue, J. F., He, X.-G. & Pakvasa, S. Hyperon decays and CP nonconservation. Phys. Rev. D 34, 833–842 (1986).

    ADS  Article  Google Scholar 

  32. 32.

    Bigi, I. I., Kang, X.-W. & Li, H.-B. CP asymmetries in strange baryon decays. Chin. Phys. C 42, 013101 (2018).

    ADS  Article  Google Scholar 

  33. 33.

    Jadach, S., Ward, B. F. L. & Was, Z. The precision Monte Carlo event generator KK for two fermion final states in e + e collisions. Comput. Phys. Commun. 130, 260–325 (2000).

    ADS  Article  Google Scholar 

  34. 34.

    Lange, D. J. The EvtGen particle decay simulation package. Nucl. Instrum. Methods A462, 152–155 (2001).

    ADS  Article  Google Scholar 

  35. 35.

    Ping, R.-G. Event generators at BESIII. Chin. Phys. C 32, 599 (2008).

    ADS  Article  Google Scholar 

  36. 36.

    Chen, J. C., Huang, G. S., Qi, X. R., Zhang, D. H. & Zhu, Y. S. Event generator for J/ψ and ψ(2S) decay. Phys. Rev. D 62, 034003 (2000).

    ADS  Article  Google Scholar 

  37. 37.

    Yang, R.-L., Ping, R.-G. & Chen, H. Tuning and validation of the Lundcharm model with J/ψ decays. Chin. Phys. Lett. 31, 061301 (2014).

    ADS  Article  Google Scholar 

  38. 38.

    Zhong, B., Ping, R.-G. & Xiao, Z.-J. Study of \(\bar \Lambda\) decay parameter in \(\bar \Lambda\) decay. Chin. Phys. C 32, 692 (2008).

    ADS  Article  Google Scholar 

  39. 39.

    Ablikim, M. et al. Study of J/ψ decays to \(\Lambda \bar \Lambda\) and \(\Lambda \bar \Lambda\). Phys. Lett. B 632, 181–186 (2006).

    ADS  Article  Google Scholar 

  40. 40.

    Ablikim, M. et al. First observation of the isospin violating decay \(J/\psi \to \Lambda \bar \Sigma ^0 + c.c.\) Phys. Rev. D 86, 032008 (2012).

    ADS  Article  Google Scholar 

  41. 41.

    James, F. & Roos, M. Minuit: a system for function minimization and analysis of the parameter errors and correlations. Comput. Phys. Commun. 10, 343–367 (1975).

    ADS  Article  Google Scholar 

  42. 42.

    Ablikim, M. et al. Amplitude analysis of the \(D^ + \to K_S^0\pi ^ + \pi ^0\) Dalitz plot. Phys. Rev. D 89, 052001 (2014).

    ADS  Article  Google Scholar 

Download references


The BESIII collaboration thanks the staff of BEPCII and the IHEP computing centre for their support. This work is supported in part by the National Key Basic Research Program of China under contract no. 2015CB856700; the National Natural Science Foundation of China (NSFC) under contract nos. 11335008, 11375205, 11425524, 11625523, 11635010, 11735014, 11835012 and 11875054; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under contract nos. U1532257, U1532258, U1732102, U1732263 and U1832207; CAS Key Research Program of Frontier Sciences under contract nos. QYZDJ-SSW-SLH003 and QYZDJ-SSW-SLH040; 100 Talents Program of CAS; the CAS President’s International Fellowship Initiative; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG under the contracts Collaborative Research Center CRC 1044 and FOR 2359; Istituto Nazionale di Fisica Nucleare, Italy; Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) under contract no. 530-4CDP03; Ministry of Development of Turkey under contract no. DPT2006K-120470; National Science and Technology fund; The Swedish Research Council; the Knut and Alice Wallenberg Foundation; US Department of Energy under contract nos. DE-FG02-05ER41374, DE-SC-0010118, DE-SC-0010504 and DE-SC-0012069; University of Groningen (RuG); Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt. All consortium work was carried out at affiliations 1–67.

Author information




All authors have contributed to this publication, being variously involved in the design and construction of the detectors, writing software, calibrating sub-systems, operating the detectors, acquiring data and analysing the processed data.

Corresponding author

Correspondence to A. Kupsc.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Physics thanks Anna Zuzana Dubnickova, Ulrik Egede and Ilya Selyuzhenkov for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A full list of authors and affiliations appears in the online version of this paper.

Supplementary information

Supplementary Information

Supplementary figures and tables.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ablikim, M., Achasov, M.N., Ahmed, S. et al. Polarization and entanglement in baryon–antibaryon pair production in electron–positron annihilation. Nat. Phys. 15, 631–634 (2019). https://doi.org/10.1038/s41567-019-0494-8

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing