Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The BESIII physics programme

Abstract

The standard model of particle physics is a well-tested theoretical framework, but there are still a number of issues that deserve further experimental and theoretical investigation. For quark physics, such issues include the nature of quark confinement; the mechanism that connects the quarks and gluons of the standard model theory to the strongly interacting particles; and the weak decays of quarks, which may provide insights into new physics mechanisms responsible for the matter–antimatter asymmetry of the Universe. These issues are addressed by the Beijing Spectrometer III (BESIII) experiment at the Beijing Electron–Positron Collider II (BEPCII) storage ring, which for the past decade has been studying particles produced in electron–positron collisions in the tau-charm energy-threshold region, and has by now accumulated the world’s largest dataset that enables searches for non-standard hadrons, weak decays of the charmed particles and new physics phenomena beyond the standard model. Here, we review the contributions of BESIII to such studies and discuss future prospects for BESIII and other experiments.

Key points

  • Precision measurements of the tau-lepton mass, |Vcd| and |Vcs| Cabibbo–Kobayashi–Maskawa (CKM) matrix elements, low-energy electron–positron (e+e) annihilation cross-sections and complex phases in D-meson decays test the standard model and provide important input for experiments at other energies.

  • Measurements of the purely leptonic and semileptonic decay rates of D and Ds mesons provide sensitive tests of lattice quantum chromodynamics calculations of charmed-meson decay constants and form factors.

  • Studies of directly produced Y(4260) mesons led to discoveries of the Zc(3900) and Zc(4020) non-standard, four-quark hadrons and a new production mode for the X(3872).

  • Huge samples of radiative J/ψ decays have provided a deeper understanding of scalar, pseudoscalar and tensor glueballs, and the intriguing but poorly understood resonant structures at the proton–antiproton mass threshold.

  • The discovery of substantial polarization of strange baryons produced in J/ψ decays provides new and unique opportunities for high-sensitivity searches for non-standard-model sources of charge conjugation–parity (CP) symmetry violation.

  • Investigations of time-like electromagnetic form factors of Λ0 and \({\varLambda }_{c}^{+}\) baryons revealed unexpected threshold behaviours and motivated measurements for other stable baryons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of cross-section measurements.
Fig. 2: Signals of purely leptonic charmed-meson decays.
Fig. 3: Signals of XYZ states observed at BESIII.
Fig. 4: The states close to the \(p\bar{p}\) mass threshold.
Fig. 5: BESIII measurements on baryon properties.

Similar content being viewed by others

References

  1. Weinberg, S. Essay: half a century of the standard model. Phys. Rev. Lett. 121, 220001 (2018).

    ADS  Google Scholar 

  2. Aubert, B. et al. The BaBar detector. Nucl. Instrum. Methods A 479, 1–116 (2002).

    ADS  Google Scholar 

  3. Abashian, A. et al. The Belle detector. Nucl. Instrum. Methods A 479, 117–232 (2002).

    ADS  Google Scholar 

  4. Ablikim, M. et al. Design and construction of the BESIII detector. Nucl. Instrum. Methods A 614, 345–399 (2010).

    ADS  Google Scholar 

  5. Alves, A. A. Jr et al. The LHCb detector at the LHC. J. Instrum. 3, S08005 (2008).

    Google Scholar 

  6. Kou, E. et al. The Belle II physics book. Preprint at https://arxiv.org/abs/1808.10567 (2018).

  7. Luo, Q. & Xu, D. Progress on preliminary conceptual study of HIEPA, a super tau-charm factory in China. In Proc. 9th International Particle Accelerator Conference (IPAC 2018) MOPML013 (2018).

  8. Levichev, E. B., Skrinskii, A. N., Tumaikin, G. M. & Shatunov, Yu. M. Electron–positron beam collision studies at Budker Institute of Nuclear Physics. Phys. Usp. 61, 405–423 (2018).

    ADS  Google Scholar 

  9. Bevan, A. J. et al. The physics of the B factories. Eur. Phys. J. C 74, 3026 (2014).

    ADS  Google Scholar 

  10. Kobayashi, M. & Maskawa., T. CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973).

    ADS  Google Scholar 

  11. Brambilla, N. et al. Heavy quarkonium: progress, puzzles, and opportunities. Eur. Phys. J. C 71, 1534 (2011).

    ADS  Google Scholar 

  12. Chen, H.-X., Chen, W., Liu, X. & Zhu, S.-L. The hidden-charm pentaquark and tetraquark states. Phys. Rep. 639, 1–121 (2016).

    ADS  MathSciNet  Google Scholar 

  13. Olsen, S. Lars, Skwarnicki, T. & Zieminska, D. Nonstandard heavy mesons and baryons: experimental evidence. Rev. Mod. Phys. 90, 015003 (2018).

    ADS  MathSciNet  Google Scholar 

  14. Guo, F.-K. et al. Hadronic molecules. Rev. Mod. Phys. 90, 015004 (2018).

    ADS  Google Scholar 

  15. Gell-Mann, M. A schematic model of baryons and mesons. Phys. Lett. 8, 214–215 (1964).

    ADS  Google Scholar 

  16. Zweig, G. An SU 3 Model for Strong Interaction Symmetry and Its Breaking CERN-TH-401 (1964).

  17. Bai, J. Z. et al. The BES detector. Nucl. Instrum. Methods A 344, 319–334 (1994).

    ADS  Google Scholar 

  18. Bai, J. Z. et al. The BES upgrade. Nucl. Instrum. Methods A 458, 627–637 (2001).

    ADS  Google Scholar 

  19. Qin, Q., Ma, L., Wang, J. & Zhang, C. Status and performance of BEPCII. Proceedings, 1st International Particle Accelerator Conference (IPAC'10): Kyoto, Japan, May 23-28, 2010.

  20. Bai, J. Z. et al. Measurement of the mass of the τ lepton. Phys. Rev. Lett. 69, 3021–3024 (1992).

    ADS  Google Scholar 

  21. Bai, J. Z. et al. A direct measurement of the pseudoscalar decay constant \({f}_{{D}_{s}}\). Phys. Rev. Lett. 74, 4599–4602 (1995).

    ADS  Google Scholar 

  22. Bai, J. Z. et al. Measurements of the cross section for e + e → hadrons at center-of-mass energies from 2 to 5 GeV. Phys. Rev. Lett. 88, 101802 (2002).

    ADS  Google Scholar 

  23. Ablikim, M. et al. The σ pole in J/ψωπ + π . Phys. Lett. B 598, 149–158 (2004).

    Google Scholar 

  24. Ablikim, M. et al. Evidence for κ meson production in \(J/\psi \to {\bar{K}}^{* }{(892)}^{0}{K}^{+}{\pi }^{-}\) process. Phys. Lett. B 633, 681–690 (2006).

    ADS  Google Scholar 

  25. Mo, X.-H., Yuan, C.-Z. & Wang, P. Study of the ρπ puzzle in charmonium decays. High. Energy Phys. Nucl. Phys. 31, 686–701 (2007).

    Google Scholar 

  26. Jaffe, R. L. Exotica. Phys. Rep. 409, 1–45 (2005).

    ADS  Google Scholar 

  27. Deng, W.-J., Liu, H., Gui, L.-C. & Zhong, X.-H. Charmonium spectrum and their electromagnetic transitions with higher multipole contributions. Phys. Rev. D 95, 034026 (2017).

    ADS  Google Scholar 

  28. Brodsky, S. J., Hwang, D. S. & Lebed., R. F. Dynamical picture for the formation and decay of the exotic xyz mesons. Phys. Rev. Lett. 113, 112001 (2014).

    ADS  Google Scholar 

  29. Bondar, A. et al. Observation of two charged bottomonium-like resonances in Y(5S) decays. Phys. Rev. Lett. 108, 122001 (2012).

    ADS  Google Scholar 

  30. Aaij, R. et al. Observation of J/ψp resonances consistent with pentaquark states in \({\varLambda }_{b}^{0}\to J/\psi {K}^{-}p\) Decays. Phys. Rev. Lett. 115, 072001 (2015).

    ADS  Google Scholar 

  31. Ablikim, M. et al. Precision measurement of the mass of the τ lepton. Phys. Rev. D 90, 012001 (2014).

    ADS  Google Scholar 

  32. Abakumova, E. V. et al. The beam energy measurement system for the Beijing electron–positron collider. Nucl. Instrum. Methods A 659, 21–29 (2011).

    ADS  Google Scholar 

  33. Zhang, J. Y. τ lepton mass measurement at BESIII. Preprint at https://arxiv.org/abs/1812.10056 (2018).

  34. Bennett, G. W. et al. Final report of the muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006).

    ADS  Google Scholar 

  35. Davier, M., Hoecker, A., Malaescu, B. & Zhang, Z. Reevaluation of the hadronic vacuum polarisation contributions to the standard model predictions of the muon g − 2 and \(\alpha ({m}_{Z}^{2})\) using newest hadronic cross-section data. Eur. Phys. J. C 77, 827 (2017).

    ADS  Google Scholar 

  36. Keshavarzi, A., Nomura, D. & Teubner, T. Muon g − 2 and \(\alpha ({M}_{Z}^{2})\): a new data-based analysis. Phys. Rev. D 97, 114025 (2018).

    ADS  Google Scholar 

  37. Grange, J. et al. Muon g − 2 technical design report. Preprint at https://arxiv.org/abs/1501.06858 (2015).

  38. Otani, M. Status of the muon g − 2/EDM experiment at J-PARC (E34). JPS Conf. Proc. 8, 025008 (2015).

    Google Scholar 

  39. Miura, K. Review on lattice QCD studies for muon g − 2 with hadron vacuum polarization. In 36th International Symposium on Lattice Field Theory (Lattice 2018) 1901.09052 (2019).

  40. Davies, C. T. H. et al. Hadronic-vacuum-polarization contribution to the muon’s anomalous magnetic moment from four-flavor lattice QCD. Preprint at https://arxiv.org/abs/1902.04223 (2019).

  41. Achasov, M. N. et al. Update of the e + e π + π cross-section measured by SND detector in the energy region \(400 < \sqrt{s} < 1000\,{\rm{MeV}}\). J. Exp. Theor. Phys. 103, 380–384 (2006).

    ADS  Google Scholar 

  42. Lees, J. P. et al. Precise measurement of the e + e π + π (γ) cross section with the initial-state radiation method at BaBar. Phys. Rev. D 86, 032013 (2012).

    ADS  Google Scholar 

  43. Ablikim, M. et al. Measurement of the e + e π + π cross section between 600 and 900 MeV using initial state radiation. Phys. Lett. B 753, 629–638 (2016).

    ADS  Google Scholar 

  44. Akhmetshin, R. R. et al. Reanalysis of hadronic cross-section measurements at CMD-2. Phys. Lett. B 578, 285–289 (2004).

    ADS  Google Scholar 

  45. Akhmetshin, R. R. et al. High-statistics measurement of the pion form factor in the ρ-meson energy range with the CMD-2 detector. Phys. Lett. B 648, 28–38 (2007).

    ADS  Google Scholar 

  46. Anastasi, A. et al. Combination of KLOE σ(e + e π + π γ(γ)) measurements and determination of \({a}_{\mu }^{{\pi }^{+}{\pi }^{-}}\) in the energy range 0.10 < s < 0.95 GeV2. J. High Energy Phys. 2018, 173 (2018).

    Google Scholar 

  47. Akhmetshin, R. R. et al. Study of the process e + e π + π π + π in the c.m. energy range 920–1060 MeV with the CMD-3 detector. Phys. Lett. B 768, 345–350 (2017).

    ADS  Google Scholar 

  48. Ripka, M. Initial state radiation measurements at BESIII. Nucl. Part. Phys. Proc. 294–296, 158–163 (2018).

    Google Scholar 

  49. Ablikim, M. et al. Luminosity measurements for the R scan experiment at BESIII. Chin. Phys. C41, 063001 (2017).

    ADS  Google Scholar 

  50. Bazavov, A. et al. B- and D-meson leptonic decay constants from four-flavor lattice QCD. Phys. Rev. D 98, 074512 (2018).

    ADS  MathSciNet  Google Scholar 

  51. Ablikim, M. et al. Precision measurements of \(B({D}^{+}\to {\mu }^{+}{\nu }_{\mu })\), the pseudoscalar decay constant \({f}_{{D}^{+}}\), and the quark mixing matrix element |V cd|. Phys. Rev. D 89, 051104 (2014).

    ADS  Google Scholar 

  52. Tanabashi, M. et al. Review of particle physics. Phys. Rev. D 98, 030001 (2018).

    ADS  Google Scholar 

  53. Ablikim, M. et al. Determination of the pseudoscalar decay constant \({f}_{{D}_{s}^{+}}\) via \({f}_{{D}_{s}^{+}}\). Phys. Rev. Lett. 122, 071802 (2019).

    ADS  Google Scholar 

  54. Carrasco, N. et al. Leptonic decay constants f K, f D, and \({f}_{{D}_{s}}\) with N f = 2 + 1 + 1 twisted-mass lattice QCD. Phys. Rev. D 91, 054507 (2015).

    ADS  Google Scholar 

  55. Besson, D. et al. Improved measurements of D meson semileptonic decays to π and K mesons. Phys. Rev. D 80, 032005 (2009).

    ADS  Google Scholar 

  56. Ablikim, M. et al. Study of dynamics of D 0K e + ν e and D 0π e + ν e decays. Phys. Rev. D 92, 072012 (2015).

    ADS  Google Scholar 

  57. Wang, W. Y., Wu, Y. L. & Zhong, M. Heavy to light meson exclusive semileptonic decays in effective field theory of heavy quarks. Phys. Rev. D 67, 014024 (2003).

    ADS  Google Scholar 

  58. Ablikim, M. et al. Study of the \({D}^{0}\to {K}^{-}{\mu }^{+}{\nu }_{\mu }\) dynamics and test of lepton flavor universality with \({D}^{0}\to {K}^{-}{\ell }^{+}{\nu }_{\ell }\) decays. Phys. Rev. Lett. 122, 011804 (2019).

    ADS  Google Scholar 

  59. Ablikim, M. et al. Measurement of the branching fraction for the semi-leptonic decay D 0(+)π −(0) μ + ν μ and test of lepton universality. Phys. Rev. Lett. 121, 171803 (2018).

    ADS  Google Scholar 

  60. Ablikim, M. et al. Analysis of \({D}^{+}\to {\bar{K}}^{0}{e}^{+}{\nu }_{e}\) and \({D}^{+}\to {\bar{K}}^{0}{e}^{+}{\nu }_{e}\) semileptonic decays. Phys. Rev. D 96, 012002 (2017).

    ADS  Google Scholar 

  61. Ablikim, M. et al. Improved measurement of the absolute branching fraction of \({D}^{+}\to {\bar{K}}^{0}{\mu }^{+}{\nu }_{\mu }\). Eur. Phys. J. C 76, 369 (2016).

    ADS  Google Scholar 

  62. Bifani, S., Descotes-Genon, S., Romero Vidal, A. & Schune, M.-H. Review of lepton universality tests in B decays. J. Phys. G 46, 023001 (2019).

    ADS  Google Scholar 

  63. Riggio, L., Salerno, G. & Simula, S. Extraction of |V cd| and |V cs| from experimental decay rates using lattice QCD \(D\to \pi (K)\ell \nu \) form factors. Eur. Phys. J. C78, 501 (2018).

    ADS  Google Scholar 

  64. Soni, N. R. & Pandya, J. N. Decay \(D\to {K}^{(* )}{\ell }^{+}{\nu }_{\ell }\) in covariant quark model. Phys. Rev. D 96, 016017 (2017).

    ADS  Google Scholar 

  65. Ablikim, M. et al. Study of D +K π + e + ν e. Phys. Rev. D 94, 032001 (2016).

    ADS  Google Scholar 

  66. Ablikim, M. et al. Observation of the semileptonic decay D 0a 0(980) e + ν e and evidence for D +a 0(980)0 e + ν e. Phys. Rev. Lett. 121, 081802 (2018).

    ADS  Google Scholar 

  67. Ablikim, M. et al. Study of the decay \({D}^{0}\to {\bar{K}}^{0}{\pi }^{-}{e}^{+}{\nu }_{e}\). Phys. Rev. D 99, 011103 (2019).

    ADS  Google Scholar 

  68. Ablikim, M. et al. First observation of D +f 0(500)e + ν e and improved measurements of Dρe + ν e. Phys. Rev. Lett. 122, 062001 (2019).

    ADS  Google Scholar 

  69. Ablikim, M. et al. First measurement of the form factors in \({D}_{s}^{+}\to {K}^{0}{e}^{+}{\nu }_{e}\) and \({D}_{s}^{+}\to {K}^{* 0}{e}^{+}{\nu }_{e}\) decays. Phys. Rev. Lett. 122, 061801 (2019).

    ADS  Google Scholar 

  70. Ablikim, M. et al. Measurement of the form factors in the decay D +ωe + ν e and search for the decay D +ϕe + ν e. Phys. Rev. D 92, 071101 (2015).

    ADS  Google Scholar 

  71. Ablikim, M. et al. Measurements of the branching fractions for the semi-leptonic decays \({D}_{s}^{+}\to \phi {e}^{+}{\nu }_{e}\), \(\phi {\mu }^{+}{\nu }_{\mu }\), \(\eta {\mu }^{+}{\nu }_{\mu }\) and \({\eta }^{^{\prime} }{\mu }^{+}{\nu }_{\mu }\). Phys. Rev. D 97, 012006 (2018).

    ADS  Google Scholar 

  72. Ablikim, M. et al. Study of decay dynamics and CP asymmetry in \({D}^{+}\to {K}_{L}^{0}{e}^{+}{\nu }_{e}\) decay. Phys. Rev. D 92, 112008 (2015).

    ADS  Google Scholar 

  73. Ablikim, M. et al. Measurements of the absolute branching fractions for \({D}_{s}^{+}\to \eta {e}^{+}{\nu }_{e}\) and \({D}_{s}^{+}\to {\eta }^{^{\prime} }{e}^{+}{\nu }_{e}\). Phys. Rev. D 94, 112003 (2016).

    ADS  Google Scholar 

  74. Chau, L.-L. & Keung, W.-Y. Comments on the parametrization of the Kobayashi–Maskawa matrix. Phys. Rev. Lett. 53, 1802 (1984).

    ADS  Google Scholar 

  75. Amhis, Y. et al. HFLAV input to the update of the European Strategy for Particle Physics. Preprint at https://arxiv.org/abs/1812.07461 (2018).

  76. Asner, D. M. et al. Physics at BES-III. Int. J. Mod. Phys. A 24, S1–794 (2009).

    Google Scholar 

  77. Libby, J. et al. Model-independent determination of the strong-phase difference between D 0 and \({\bar{D}}^{0}\to {K}_{S,L}^{0}{h}^{+}{h}^{-}\) (h = π, K ) and its impact on the measurement of the CKM angle γ/ϕ 3. Phys. Rev. D 82, 112006 (2010).

    ADS  Google Scholar 

  78. Aaij, R. et al. Measurement of the CKM angle γ using B ±DK ± with \(D\to {K}_{{\rm{S}}}^{0}{\pi }^{+}{\pi }^{-}\), \({K}_{{\rm{S}}}^{0}{K}^{+}{K}^{-}\) decays. J. High Energy Phys. 2018, 176 (2018).

    Google Scholar 

  79. Malde, S. S. Synergy of BESIII and LHCb Physics Programmes Technical Report LHCb-PUB-2016-025 (CERN, 2016).

  80. Abrams, G. S. et al. Observation of charmed-baryon production in e + e annihilation. Phys. Rev. Lett. 44, 10 (1980).

    ADS  Google Scholar 

  81. Zupanc, A. et al. Measurement of the branching fraction \({\mathscr{B}}({\varLambda }_{c}^{+}\to p{K}^{-}{\pi }^{+})\). Phys. Rev. Lett. 113, 042002 (2014).

    ADS  Google Scholar 

  82. Ablikim, M. et al. Measurement of the absolute branching fraction for \({\varLambda }_{c}^{+}\to \varLambda {e}^{+}{\nu }_{e}\). Phys. Rev Lett. 115, 221805 (2015).

    ADS  Google Scholar 

  83. Ablikim, M. et al. Measurement of the absolute branching fraction for \({\varLambda }_{c}^{+}\to \varLambda {\mu }^{+}{\nu }_{\mu }\). Phys. Lett. B 767, 42–47 (2017).

    ADS  Google Scholar 

  84. Ablikim, M. et al. Measurements of absolute hadronic branching fractions of \({\varLambda }_{c}^{+}\) baryon. Phys. Rev. Lett. 116, 052001 (2016).

    ADS  Google Scholar 

  85. Ablikim, M. et al. Precision measurement of the \({e}^{+}{e}^{-}\to {\varLambda }_{c}^{+}{\bar{\varLambda }}_{c}^{-}\) cross section near threshold. Phys. Rev. Lett. 120, 132001 (2018).

    ADS  Google Scholar 

  86. Bai, J. Z. et al. Observation of a near-threshold enhancement in the \(p\bar{p}\) mass spectrum from radiative γ \(p\bar{p}\) decays. Phys. Rev. Lett. 91, 022001 (2003).

    ADS  Google Scholar 

  87. Wang, X. L. et al. Observation of Two resonant structures in e + e π + π ψ(2S) via initial state radiation at Belle. Phys. Rev. Lett. 99, 142002 (2007).

    ADS  Google Scholar 

  88. Ablikim, M. et al. Observation of a charged charmoniumlike structure in e + e π + π J/ψ at \(\sqrt{s}=4.26\,{\rm{GeV}}\). Phys. Rev. Lett. 110, 252001 (2013).

    ADS  Google Scholar 

  89. Liu, Z. Q. et al. Study of e + e π + π J/ψ and observation of a charged charmoniumlike state at Belle. Phys. Rev. Lett. 110, 252002 (2013).

    ADS  Google Scholar 

  90. Xiao, T., Dobbs, S., Tomaradze, A. & Seth, K. K. Observation of the charged hadron \({Z}_{c}^{\pm }(3900)\) and evidence for the neutral \({Z}_{c}^{\pm }(3900)\) in e + e ππJ/ψ at \(\sqrt{s}=4170\,{\rm{MeV}}\). Phys. Lett. B 727, 366–370 (2013).

    ADS  Google Scholar 

  91. Ablikim, M. et al. Determination of the spin and parity of the Z c(3900). Phys. Rev. Lett. 119, 072001 (2017).

    ADS  Google Scholar 

  92. Ablikim, M. et al. Observation of a charged \({(D{\bar{D}}^{* })}^{\pm }\) mass peak in e + e πD \({\bar{D}}^{* }\) at \(\sqrt{s}=4.26\,{\rm{GeV}}\). Phys. Rev. Lett. 112, 022001 (2014).

    ADS  Google Scholar 

  93. Ablikim, M. et al. Confirmation of a charged charmoniumlike state \({Z}_{c}{(3885)}^{\mp }\) in \({Z}_{c}{(3885)}^{\mp }\) with double D tag. Phys. Rev. D92, 092006 (2015).

    ADS  Google Scholar 

  94. Yuan, C.-Z. The XYZ states revisited. Int. J. Mod. Phys. A 33, 1830018 (2018).

    ADS  Google Scholar 

  95. Ablikim, M. et al. Observation of a charged charmoniumlike structure z c(4020) and search for the z c(3900) in e + e π + π h c. Phys. Rev. Lett. 111, 242001 (2013).

    ADS  Google Scholar 

  96. Ablikim, M. et al. Measurement of e + e π + π ψ(3686) from 4.008 to 4.600 GeV and observation of a charged structure in the π ± ψ(3686) mass spectrum. Phys. Rev. D 96, 032004 (2017).

    ADS  Google Scholar 

  97. Choi, S. K. et al. Observation of a narrow charmonium-like state in exclusive B ±K ± π + π J/ψ decays. Phys. Rev. Lett. 91, 262001 (2003).

    ADS  Google Scholar 

  98. Tornqvist, N. A. Comment on the narrow charmonium state of Belle at 3871.8 MeV as a deuson. Preprint at https://arxiv.org/abs/hep-ph/0308277 (2003).

  99. Wang, Q., Hanhart, C. & Zhao, Q. Decoding the riddle of Y(4260) and Z c(3900). Phys. Rev. Lett. 111, 132003 (2013).

    ADS  Google Scholar 

  100. Maiani, L. et al. A J PG = 1++ charged resonance in the Y(4260) → π + π J/ψ decay? Phys. Rev. D 87, 111102 (2013).

    ADS  Google Scholar 

  101. Lebed, R. F. & Polosa, A. D. χ c0(3915) as the lightest \(c\bar{c}s\bar{s}\) state. Phys. Rev. D 93, 094024 (2016).

    ADS  Google Scholar 

  102. Ablikim, M. et al. Observation of a charged charmoniumlike structure in \({e}^{+}{e}^{-}\to {({D}^{* }{\bar{D}}^{* })}^{\pm }{\pi }^{\mp }\) at \({e}^{+}{e}^{-}\to {({D}^{* }{\bar{D}}^{* })}^{\pm }{\pi }^{\mp }\). Phys. Rev. Lett. 112, 132001 (2014).

    ADS  Google Scholar 

  103. Bugg, D. V. An explanation of Belle states Z b(10610) and Z b(10650). Europhys. Lett. 96, 11002 (2011).

    ADS  Google Scholar 

  104. Chen, D.-Y., Liu, X. & Matsuki, T. Reproducing the Z c(3900) structure through the initial-single-pion-emission mechanism. Phys. Rev. D 88, 036008 (2013).

    ADS  Google Scholar 

  105. Swanson, E. S. Cusps and exotic charmonia. Int. J. Mod. Phys. E 25, 1642010 (2016).

    ADS  Google Scholar 

  106. Guo, F.-K., Hanhart, C., Wang, Q. & Zhao, Q. Could the near-threshold XYZ states be simply kinematic effects? Phys. Rev. D 91, 051504 (2015).

    ADS  Google Scholar 

  107. Szczepaniak, A. P. Dalitz plot distributions in presence of triangle singularities. Phys. Lett. B 757, 61–64 (2016).

    ADS  Google Scholar 

  108. Ablikim, M. et al. Observation of Z c(3900)0 in e + e π 0 π 0 J/ψ. Phys. Rev. Lett. 115, 112003 (2015).

    ADS  Google Scholar 

  109. Ablikim, M. et al. Observation of a neutral structure near the \(D{\bar{D}}^{* }\) mass threshold in \(D{\bar{D}}^{* }\) at \(D{\bar{D}}^{* }\) = 4.226 and 4.257 GeV. Phys. Rev. Lett. 115, 222002 (2015).

    ADS  Google Scholar 

  110. Ablikim, M. et al. Observation of e + e π 0 π 0 h c and a neutral charmoniumlike structure Z c(4020)0. Phys. Rev. Lett. 113, 212002 (2014).

    ADS  Google Scholar 

  111. Ablikim, M. et al. Observation of a neutral charmoniumlike state Z c(4025)0 in \({e}^{+}{e}^{-}\to {({D}^{* }{\bar{D}}^{* })}^{0}{\pi }^{0}\). Phys. Rev. Lett. 115, 182002 (2015).

    ADS  Google Scholar 

  112. Aubert, B. et al. Observation of a broad structure in the π + π J/ψ mass spectrum around 4.26 GeV/c 2. Phys. Rev. Lett. 95, 142001 (2005).

    ADS  Google Scholar 

  113. Aubert, B. et al. Evidence of a broad structure at an invariant mass of 4.32 GeV/c 2 in the reaction e + e π + π ψ 2S measured at BaBar. Phys. Rev. Lett. 98, 212001 (2007).

    ADS  Google Scholar 

  114. Qiao, C.-F. One explanation for the exotic state Y(4260). Phys. Lett. B 639, 263–265 (2006).

    ADS  Google Scholar 

  115. Ding, G.-J. Are Y(4260) and \({Z}_{2}^{+}(4250)\) are D 1 D or D 0 D* hadronic molecules? Phys. Rev. D 79, 014001 (2009).

    ADS  Google Scholar 

  116. Dai, L. Y., Shi, M., Tang, G.-Y. & Zheng, H. Q. Nature of X(4260). Phys. Rev. D 92, 014020 (2015).

    ADS  Google Scholar 

  117. Maiani, L., Riquer, V., Piccinini, F. & Polosa, A. D. Four quark interpretation of Y(4260). Phys. Rev. D 72, 031502 (2005).

    ADS  Google Scholar 

  118. Ali, A. et al. A new look at the Y tetraquarks and Ω c baryons in the diquark model. Eur. Phys. J. C 78, 29 (2018).

    ADS  Google Scholar 

  119. Zhu, S.-L. The possible interpretations of Y(4260). Phys. Lett. B 625, 212 (2005).

    ADS  Google Scholar 

  120. Kou, E. & Pene, O. Suppressed decay into open charm for the Y(4260) being an hybrid. Phys. Lett. B 631, 164–169 (2005).

    ADS  Google Scholar 

  121. Dubynskiy, S. & Voloshin, M. B. Hadro-charmonium. Phys. Lett. B 666, 344–346 (2008).

    ADS  Google Scholar 

  122. Ablikim, M. et al. Precise measurement of the e + e π + π J/ψ cross section at center-of-mass energies from 3.77 to 4.60 GeV. Phys. Rev. Lett. 118, 092001 (2017).

    ADS  Google Scholar 

  123. Yuan, C. Z. et al. Measurement of e + e π + π J/ψ cross-section via initial state radiation at Belle. Phys. Rev. Lett. 99, 182004 (2007).

    ADS  Google Scholar 

  124. Patrignani, C. et al. Review of particle physics. Chin. Phys. C 40, 100001 (2016).

    ADS  Google Scholar 

  125. Ablikim, M. et al. Evidence of two resonant structures in e + e π + π h c. Phys. Rev. Lett. 118, 092002 (2017).

    ADS  Google Scholar 

  126. Ablikim, M. et al. Study of e + e ωχ cJ at center-of-mass energies from 4.21 to 4.42 GeV. Phys. Rev. Lett. 114, 092003 (2015).

    ADS  Google Scholar 

  127. Ablikim, M. et al. Evidence of a resonant structure in the e + e π + D 0 D* cross section between 4.05 and 4.60 GeV. Phys. Rev. Lett. 122, 102002 (2019).

    ADS  Google Scholar 

  128. Ablikim, M. et al. Observation of e + e γX(3872) at BESIII. Phys. Rev. Lett. 112, 092001 (2014).

    ADS  Google Scholar 

  129. Ablikim, M. et al. Observation of the decay X(3872) → π 0 χ c1(1P). Phys. Rev. Lett. 122, 202001 (2019).

    ADS  Google Scholar 

  130. Dubynskiy, S. & Voloshin, M. B. Pionic transitions from X(3872) to χ cJ. Phys. Rev. D 77, 014013 (2008).

    ADS  Google Scholar 

  131. Ablikim, A. et al. Study of e + e γωJ/ψ and observation of X(3872) → ωJ/ψ. Phys. Rev. Lett. 122, 232002 (2019).

  132. Jaffe, R. L. & Johnson, K. Unconventional states of confined quarks and gluons. Phys. Lett. B 60, 201–204 (1976).

    ADS  Google Scholar 

  133. Toki, W. Search for glueballs. In The Strong Interaction, from Hadrons to Partons. Proc. 24th SLAC Summer Institute on Particle Physics (SSI 96) 141–169 (1996).

  134. Chen, Y. et al. Glueball SPECTRUM and matrix elements on anisotropic lattices. Phys. Rev. D 73, 014516 (2006).

    ADS  Google Scholar 

  135. Ablikim, M. et al. Amplitude analysis of the π 0 π 0 system produced in radiative J/ψ decays. Phys. Rev. D 92, 052003 (2015); eratum: 93, 039906 (2016).

    ADS  Google Scholar 

  136. Ablikim, M. et al. Amplitude analysis of the K S K S system produced in radiative J/ψ decays. Phys. Rev. D98, 072003 (2018).

    ADS  Google Scholar 

  137. Ablikim, M. et al. Partial wave analysis of J/ψγηη. Phys. Rev. D 87, 092009 (2013); erratum: 87, 119901 (2013).

    ADS  Google Scholar 

  138. Gui, L.-C. et al. Scalar glueball in radiative J/ψ decay on the lattice. Phys. Rev. Lett. 110, 021601 (2013).

    ADS  Google Scholar 

  139. Ablikim, M. et al. Observation of pseudoscalar and tensor resonances in J/ψγϕϕ. Phys. Rev. D 93, 112011 (2016).

    ADS  Google Scholar 

  140. Yang, Y.-B. et al. Lattice study of radiative J/ψ decay to a tensor glueball. Phys. Rev. Lett. 111, 091601 (2013).

    ADS  Google Scholar 

  141. Pakhlova, G. et al. Observation of a near-threshold enhancement in the \({e}^{+}{e}^{-}\to {\varLambda }_{c}^{+}{\varLambda }_{c}^{-}\) cross section using initial-state radiation. Phys. Rev. Lett. 101, 172001 (2008).

    ADS  Google Scholar 

  142. Ablikim, M. et al. Spin-parity analysis of \(p\bar{p}\) mass threshold structure in J/ψ and ψ′ radiative decays. Phys. Rev. Lett. 108, 112003 (2012).

    ADS  Google Scholar 

  143. Ablikim, M. et al. Observation of a resonance X(1835) in J/ψγπ + π η′. Phys. Rev. Lett. 95, 262001 (2005).

    ADS  Google Scholar 

  144. Ding, G.-J. & Yan, M.-L. Proton–antiproton annihilation in baryonium. Phys. Rev. C 72, 015208 (2005).

    ADS  Google Scholar 

  145. Ablikim, M. et al. Observation of an anomalous line shape of the ηπ + π mass spectrum near the \(p\bar{p}\) mass threshold in J/ψγηπ + π . Phys. Rev. Lett. 117, 042002 (2016).

    ADS  Google Scholar 

  146. Ablikim, M. et al. ηπ + π resonant structure around 1.8 GeV/c 2 and η(1405) in J/ψωηπ + π . Phys. Rev. Lett. 107, 182001 (2011).

    ADS  Google Scholar 

  147. Ablikim, M. et al. Observation of a structure at 1.84 GeV/c 2 in the 3(π + π ) mass spectrum in J/ψ→3(π + π ) decays. Phys. Rev. D 88, 091502 (2013).

    ADS  Google Scholar 

  148. Ablikim, M. et al. Study of \(J/\psi \to \omega p\bar{p}\) at BESIII. Phys. Rev. D 87, 112004 (2013).

    ADS  Google Scholar 

  149. Ablikim, M. et al. Study of \(J/\psi \to p\bar{p}\phi \) at BESIII. Phys. Rev. D 93, 052010 (2016).

    ADS  Google Scholar 

  150. Battaglieri, M. et al. Analysis tools for next-generation hadron spectroscopy experiments. Acta Phys. Pol. B 46, 257 (2015).

    ADS  Google Scholar 

  151. Armenteros, R., Edwards, D. N. & Jacobsen, T. Experimental results on the annihilation \(\bar{p}p\to \bar{K}K\pi \) at rest; non-K*-resonating events. Phys. Lett. 17, 344 (1965).

    ADS  Google Scholar 

  152. Protopopescu, S. D. et al. ππ partial-wave analysis from reactions π + pπ + π Δ ++ and π + pK + K Δ ++ at 7.1 GeV/c. Phys. Rev. D 7, 1279 (1973).

    ADS  Google Scholar 

  153. Achasov, N. N. 37 years with the light scalar mesons. The learned lessons. Phys. Part. Nucl. 48, 681–686 (2017).

    Google Scholar 

  154. Weinstein, J. D. & Isgur, N. \(K\bar{K}\) molcecules. Phys. Rev. D 41, 2236 (1990).

    ADS  Google Scholar 

  155. Jaffe, R. L. Multi-Quark hadrons. 1. The phenomenology of \({Q}^{2}{\bar{Q}}^{2}\) mesons. Phys. Rev. D 15, 267 (1977).

    ADS  Google Scholar 

  156. Black, D., Fariborz, A. H., Sannino, F. & Schechter, J. Putative light scalar nonet. Phys. Rev. D 59, 074026 (1999).

    ADS  Google Scholar 

  157. Oller, J. A. & Oset, E. N/D description of two meson amplitudes and chiral symmetry. Phys. Rev. D 60, 074023 (1999).

    ADS  Google Scholar 

  158. Maiani, L., Piccinini, F., Polosa, A. D. & Riquer, V. A new look at scalar mesons. Phys. Rev. Lett. 93, 212002 (2004).

    ADS  Google Scholar 

  159. ’t Hooft, G., Isidori, G., Maiani, L., Polosa, A. D. & Riquer, V. A theory of scalar mesons. Phys. Lett. B 662, 424–430 (2008).

    ADS  Google Scholar 

  160. Ishida, S. et al. Possibility of a 0(980) and f 0(975) as hybrid mesons with a massive constituent gluon. In Meson Nucleon Physics and the Structure of the Nucleon. Proc. 6th International Symposium, Vol. 1 and 2 454–456 (1995).

  161. Achasov, N. N., Devyanin, S. A. & Shestakov, G. N. The S *δ 0 mixing as the threshold phenomenon. Phys. Lett. B 88, 367–371 (1979).

    ADS  Google Scholar 

  162. Ablikim, M. et al. Observation of \({a}_{0}^{0}(980)-{f}_{0}(980)\) mixing. Phys. Rev. Lett. 121, 022001 (2018).

    ADS  Google Scholar 

  163. Dubnickova, A. Z., Dubnicka, S. & Rekalo, M. P. Investigation of the nucleon electromagnetic structure by polarization effects in \({e}^{+}{e}^{-}\to N\bar{N}\) processes. Nuovo Cim. A 109, 241–256 (1996).

    ADS  Google Scholar 

  164. Fäldt, G. & Kupsc, A. Hadronic structure functions in the \({e}^{+}{e}^{-}\to \bar{\varLambda }\varLambda \) reaction. Phys. Lett. B 772, 16–20 (2017).

    ADS  Google Scholar 

  165. Ablikim, M. et al. Polarization and entanglement in baryon-antibaryon pair production in electron-positron annihilation. Nature Physics 15, 631–634 (2019).

  166. Cronin, J. W. & Overseth, O. E. Measurement of the decay parameters of the Λ 0 particle. Phys. Rev. 129, 1795–1807 (1963).

    ADS  Google Scholar 

  167. Overseth, O. E. & Roth, R. F. Time reversal invariance in Λ 0 decay. Phys. Rev. Lett. 19, 391–393 (1967).

    ADS  Google Scholar 

  168. Dauber, P. M., Berge, J. P., Hubbard, J. R., Merrill, D. W. & Muller., R. A. Production and decay of cascade hyperons. Phys. Rev. 179, 1262–1285 (1969).

    ADS  Google Scholar 

  169. Cleland, W. E. et al. A measurement of the β-parameter in the charged nonleptonic decay of the Λ 0 hyperon. Nucl. Phys. B 40, 221–254 (1972).

    ADS  Google Scholar 

  170. Astbury, P. et al. Measurement of the differential cross-section and the spin-correlation parameters p, a, and r in the backward peak of π pK 0 Λ at 5 GeV/c. Nucl. Phys. B 99, 30–52 (1975).

    ADS  Google Scholar 

  171. Barnes, P. D. et al. Observables in high statistics measurements of the reaction \(\bar{p}p\to \bar{\varLambda }\varLambda \). Phys. Rev. C 54, 1877–1886 (1996).

    ADS  Google Scholar 

  172. Donoghue, J. F., He, X.-G. & Pakvasa, S. Hyperon decays and CP nonconservation. Phys. Rev. D 34, 833 (1986).

    ADS  Google Scholar 

  173. Olsen, S. et al. Asymmetry parameter for Λ 0nπ0. Phys. Rev. Lett. 24, 843–847 (1970).

    ADS  Google Scholar 

  174. Gonzalez, E. & Illana, J. I. CP violation in nonleptonic hyperon decays at the tau charm factory. In Tau charm factory. Proc. 3rd Workshop 525–538 (1994).

  175. Morrissey, D. E. & Ramsey-Musolf, M. J. Electroweak baryogenesis. New J. Phys. 14, 125003 (2012).

    ADS  Google Scholar 

  176. Aushev, T. et al. Physics at super B factory. Preprint at https://arxiv.org/abs/1002.5012 (2010).

  177. Bediaga, I. et al. Framework TDR for the LHCb Upgrade (2012). CERN-LHCC-2012-007, LHCb-TDR-12.

  178. Aaij, R. et al. Physics case for an LHCb Upgrade II — opportunities in flavour physics, and beyond, in the HL-LHC era. Preprint at https://arxiv.org/abs/1808.08865 (2018).

  179. Acciarri, R. et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE). Preprint at https://arxiv.org/abs/1601.05471 (2016).

  180. Abe, K. et al. Hyper-Kamiokande design report. Preprint at https://arxiv.org/abs/1805.04163 (2018).

  181. Aaij, R. et al. Observation of CP violation in charm decays. Phys. Rev. Lett. 122, 211803 (2019).

    ADS  Google Scholar 

  182. Khodjamirian, A. & Petrov, A. A. Direct CP asymmetry in Dπ π + and DK K + in QCD-based approach. Phys. Lett. B 774, 235–242 (2017).

    ADS  Google Scholar 

  183. Golden, M. & Grinstein., B. Enhanced CP violations in hadronic charm decays. Phys. Lett. B 222, 501–506 (1989).

    ADS  Google Scholar 

  184. Buccella, F., Lusignoli, M., Miele, G., Pugliese, A. & Santorelli, P. Nonleptonic weak decays of charmed mesons. Phys. Rev. D 51, 3478–3486 (1995).

    ADS  Google Scholar 

  185. Bianco, S., Fabbri, F. L., Benson, D. & Bigi, I. A Cicerone for the physics of charm. Riv. Nuovo Cim. 26N7, 1–200 (2003).

    Google Scholar 

  186. Grossman, Y., Kagan, A. L. & Nir, Y. New physics and CP violation in singly Cabibbo suppressed D decays. Phys. Rev. D 75, 036008 (2007).

    ADS  Google Scholar 

  187. Pacetti, S., Baldini Ferroli, R. & Tomasi-Gustafsson, E. Proton electromagnetic form factors: basic notions, present achievements and future perspectives. Phys. Rep. 550–551, 1–103 (2015).

    ADS  MathSciNet  Google Scholar 

  188. Sakharov, A. D. Interaction of an electron and positron in pair production. Zh. Eksp. Teor. Fiz. 18, 631–635 (1948); Usp. Fiz. Nauk 161, 29–34 (1991).

    Google Scholar 

  189. Arbuzov, A. B. & Kopylova, T. V. On relativization of the Sommerfeld–Gamow–Sakharov factor. J. High Energy Phys. 2012, 9 (2012).

    ADS  Google Scholar 

  190. Lees, J. P. et al. Study of \({e}^{+}{e}^{-}\to p\bar{p}\) via initial-state radiation at BaBar. Phys. Rev. D 87, 092005 (2013).

    ADS  Google Scholar 

  191. Akhmetshin, R. R. et al. Observation of a fine structure in e + e → hadrons production at the nucleon–antinucleon threshold. Phys. Lett. B 794, 64–68 (2019).

    ADS  Google Scholar 

  192. Antonelli, A. et al. The first measurement of the neutron electromagnetic form-factors in the timelike region. Nucl. Phys. B 517, 3–35 (1998).

    ADS  Google Scholar 

  193. Achasov, M. N. et al. Study of the process \({e}^{+}{e}^{-}\to n\bar{n}\) at the VEPP-2000 e + e collider with the SND detector. Phys. Rev. D 90, 112007 (2014).

  194. Bisello, D. et al. Baryon pair production in e + e annihilation at \(\sqrt{s}=2.4\) GeV. Z. Phys. C 48, 23–28 (1990).

    Google Scholar 

  195. Aubert, B. et al. Study of \({e}^{+}{e}^{-}\to \varLambda \bar{\varLambda }\), \({e}^{+}{e}^{-}\to \varLambda \bar{\varLambda }\), \({e}^{+}{e}^{-}\to \varLambda \bar{\varLambda }\) using initial state radiation with BaBaR. Phys. Rev. D 76, 092006 (2007).

    ADS  Google Scholar 

  196. Ablikim, M. et al. Observation of a cross-section enhancement near mass threshold in \({e}^{+}{e}^{-}\to \varLambda \bar{\varLambda }\). Phys. Rev. D 97, 032013 (2018).

    ADS  Google Scholar 

  197. Haidenbauer, J. & Meißner, U. G. The electromagnetic form factors of the Λ in the timelike region. Phys. Lett. B 761, 456–461 (2016).

    ADS  Google Scholar 

  198. Ablikim, M. et al. Measurements of the mass and width of the η c using ψ′ → γη c. Phys. Rev. Lett. 108, 222002 (2012).

    ADS  Google Scholar 

  199. Ablikim, M. et al. Study of ψ(3686) → π 0 h c, h cγη c via η c exclusive decays. Phys. Rev. D 86, 092009 (2012).

    ADS  Google Scholar 

  200. Wang, X. et al. The upgrade system of BESIII ETOF with MRPC technology. J. Instrum. 11, C08009 (2016).

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by National Natural Science Foundation of China (NSFC) under contract nos 11835012, 11521505 and 11475187; the Ministry of Science and Technology of China under contract no. 2015CB856701; Key Research Program of Frontier Sciences, CAS, grant no. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); and the CAS President’s International Fellowship Initiative (PIFI) programme. The figure in Box 1 was redrawn by Xiao-Yan Ma for this Review.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Chang-Zheng Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

B-factory

An electron–positron collider that operates at centre-of-mass energies of 10.6 GeV, just above the threshold for producing particle–antiparticle pairs of mesons containing a b quark.

‘Super tau-charm’ factories

Proposed high-performance electron–positron colliders that would operate at energies that include the thresholds for tau-lepton and charmed-meson particle–antiparticle pairs.

Non-standard hadronic states

Hadronic states with a more complex substructure than the quark–antiquark \((q\bar{q})\) mesons and three-quark (qqq) baryons of the original quark model (for example, tetraquark \((q\bar{q}q\bar{q})\) and pentaquark \((qqqq\bar{q})\) states).

Luminosity

(\({\mathscr{L}}\)). The collision intensity that relates a reaction’s event rate, dNevt/dt, to its cross-section \(\sigma :{\rm{d}}{N}_{{\rm{evt}}}/{\rm{d}}t={\mathscr{L}}\sigma \).

Charmonium

Mesons that are comprised of a charm quark and a charm antiquark and considered to be the ‘hydrogen atom’ of hadron spectroscopy.

Hyperons

Baryons that contain one or more strange quarks but no charm, bottom or top quark.

(g − 2)μ

The magnetic moment of the muon is g(eħ)/(2mμ). The Dirac theory value g = 2 is modified by quantum electrodynamics corrections that have been calculated at the ppm level.

Unitarity

A principle of quantum mechanics that requires the sum of probabilities to be exactly equal to one.

Lepton flavour universality

Also called ‘lepton universality’. An assumption in the standard model of particle physics that the interactions between leptons and gauge bosons (such as photons) are the same for all leptons.

Hadronic vacuum polarization

The process where a virtual photon momentarily materializes as a virtual system of quarks and gluons.

Helicity

The helicity of a particle is the direction of its spin relative to its momentum.

Light cone sum rule

A theoretical method developed to calculate strong interactions in quantum chromodynamics when the coupling is strong and the conventional perturbative techniques fail to apply.

Four-momentum transfer regions

Regions of final-state phase space populated by processes that experience similar values of energy-momentum changes.

Breit–Wigner function

A functional form that is commonly used to parameterize the mass-dependence of the amplitude for unstable particle resonances. A commonly used (relativistic) form is \({f}_{{\rm{BW}}}(M)\propto 1/\,[({M}_{0}^{2}-{M}^{2})-iM\varGamma ]\), where M0 is the resonance mass and Γ is its decay width.

Gluons

Virtual spin = 1 particles that mediate the strong colour force in quantum chromodynamics, analogous to the photons of quantum electrodynamics.

Glueballs

Hadronic states comprised only of gluons, with no quarks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, CZ., Olsen, S.L. The BESIII physics programme. Nat Rev Phys 1, 480–494 (2019). https://doi.org/10.1038/s42254-019-0082-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0082-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing