Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Axial-field-induced chiral channels in an acoustic Weyl system


Condensed-matter and other engineered systems, such as cold atoms1, photonic2 or phononic metamaterials3, have proved to be versatile platforms for the observation of low-energy counterparts of elementary particles from relativistic field theories. These include the celebrated Majorana modes4, as well as Dirac5,6 and Weyl fermions7,8,9. An intriguing feature of the Weyl equation10 is the chiral symmetry, where the two chiral sectors have an independent gauge freedom. Although this freedom leads to a quantum anomaly11,12,13,14,15, there is no corresponding axial background field coupling differently to opposite chiralities in quantum electrodynamics. Here, we provide the experimental characterization of the effect of such an axial field in an acoustic metamaterial. We implement the axial field through an inhomogeneous potential16 and observe the induced chiral Landau levels. From the metamaterials perspective these chiral channels open the possibility for the observation of non-local Weyl orbits17 and might enable unidirectional bulk transport in a time-reversal-invariant system18.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Inhomogeneous WP separation and axial magnetic fields.
Fig. 2: Observation of chiral Landau levels.
Fig. 3: Characterization of surface Fermi arcs.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Roy, S., Kolodrubetz, M., Goldman, N. & Grushin, A. G. Tunable axial gauge fields in engineered Weyl semimetals: semiclassical analysis and optical lattice implementations. 2D Mater. 5, 024001 (2018).

    Article  Google Scholar 

  2. 2.

    Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Li, F., Huang, X., Lu, J., Ma, J. & Liu, Z. Weyl points and Fermi arcs in a chiral phononic crystal. Nat. Phys. 14, 30–34 (2017).

    Article  Google Scholar 

  4. 4.

    Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  8. 8.

    Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    ADS  Article  Google Scholar 

  9. 9.

    Lv, B. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  10. 10.

    Weyl, H. Elektron und Gravitation. I. Z. Phys. 56, 330–352 (1929).

    ADS  Article  Google Scholar 

  11. 11.

    Adler, S. L. Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969).

    ADS  Article  Google Scholar 

  12. 12.

    Bell, J. S. & Jackiw, R. A PCAC puzzle: π 0γγ in the σ-model. Nuovo Cimento 60, 47–61 (1969).

    ADS  Article  Google Scholar 

  13. 13.

    Bertlmann, R. A. Anomalies in Quantum Field Theory (Oxford University Press, Oxford, 2000).

    Book  Google Scholar 

  14. 14.

    Landsteiner, K. Notes on anomaly induced transport. Acta Phys. Pol. B 47, 2617 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Gooth, J. et al. Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP. Nature 547, 324–327 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Pikulin, D. I., Chen, A. & Franz, M. Chiral anomaly from strain-induced gauge fields in Dirac and Weyl semimetals. Phys. Rev. X 6, 041021 (2016).

    Google Scholar 

  17. 17.

    Potter, A. C., Kimchi, I. & Vishwanath, A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat. Commun. 5, 5161 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    Huber, S. D. Topological mechanics. Nat. Phys. 12, 621–623 (2016).

    Article  Google Scholar 

  19. 19.

    Nielsen, H. & Ninomia, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Bernevig, B. A. It’s been a Weyl coming. Nat. Phys. 11, 698–699 (2015).

    Article  Google Scholar 

  21. 21.

    Yang, L. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    Article  Google Scholar 

  22. 22.

    Moll, P. J. W. et al. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2. Nature 535, 266–270 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    v. Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    ADS  Article  Google Scholar 

  24. 24.

    Xiao, M., Chen, W.-J., He, W.-Y. & Chan, C. T. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920–924 (2015).

    Article  Google Scholar 

  25. 25.

    He, H. et al. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature 560, 61–64 (2018).

    ADS  Article  Google Scholar 

  26. 26.

    Vozmediano, M. A. H., Katsnelson, M. I. & Guinea, F. Gauge fields in graphene. Phys. Rep. 496, 109 (2010).

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    Liu, C.-X., Ye, P. & Qi, X.-L. Chiral gauge field and axial anomaly in a Weyl semimetal. Phys. Rev. B 87, 235306 (2013).

    ADS  Article  Google Scholar 

  28. 28.

    Cortjio, A., Ferreirós, Y., Landsteiner, K. & Vozmediano, M. A. H. Elastic gauge fields in Weyl semimetals. Phys. Rev. Lett. 115, 177202 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Grushin, A. G., Venderbros, J. W. F., Vishwanath, A. & Ilan, R. Inhomogeneous Weyl and Dirac semimetals: transport in axial magnetic fields and Fermi arc surface states from pseudo-Landau levels. Phys. Rev. X 6, 041046 (2016).

    Google Scholar 

  30. 30.

    Sumiyoshi, H. & Fujimoto, S. Torsional chiral magnetic effect in a Weyl semimetal with a topological defect. Phys. Rev. Lett. 116, 166601 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Abbaszadeh, H., Souslov, A., Paulose, J., Schomerus, H. & Vitelli, V. Sonic Landau-level lasing and synthetic gauge fields in mechanical metamaterials. Phys. Rev. Lett. 119, 195502 (2017).

    ADS  Article  Google Scholar 

  32. 32.

    Levy, N. et al. Strain-induced pseudo–magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544–547 (2010).

    ADS  Article  Google Scholar 

  33. 33.

    Ni, X., Weiner, M., Alù, A. & Khanikaev, A. B. Observation of bulk polarization transitions and higher-order embedded topological eigenstates for sound. Preprint at (2018).

  34. 34.

    Xu, Y., Wang, S.-T. & Duan, L.-M. Weyl exceptional rings in a three-dimensional dissipative cold atomic gas. Phys. Rev. Lett. 118, 045701 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Yang, Z., Gao, Z., Yang, Y. & Zhang, B. Strain-induced gauge field and Landau levels in acoustic structures. Phys. Rev. Lett. 118, 194301 (2017).

    ADS  Article  Google Scholar 

  36. 36.

    Wen, X. et al. Observation of acoustic Landau quantization and quantum-Hall-like edge states. Preprint at (2018).

  37. 37.

    Fukushima, K., Kahrzeev, D. E. & Warringa, H. J. Chiral magnetic effect. Phys. Rev. D 78, 074033 (2008).

    ADS  Article  Google Scholar 

  38. 38.

    Liu, T., Pikulin, D. I. & Franz, M. Quantum oscillations without magnetic field. Phys. Rev. B 95, 041201(R) (2017).

    ADS  Article  Google Scholar 

  39. 39.

    Lee, C.-H. et al. Topolectrical circuits. Commun. Phys. 1, 39 (2018).

    Article  Google Scholar 

  40. 40.

    Fruchart, M. et al. Soft self-assembly of Weyl materials for light and sound. Proc. Natl Acad. Sci. USA 115, E3655 (2018).

    Article  Google Scholar 

  41. 41.

    Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    ADS  Article  Google Scholar 

Download references


We acknowledge insightful discussions with D. Pikulin and A. Stern. We are grateful for financial support from the Swiss National Science Foundation, the NCCR QSIT. This work has received funding from the European Research Council under grant agreement no. 771503.

Author information




S.D.H., R.I. and V.P. performed the theoretical part of this work. M.S.-G. and V.P. conducted the experiments. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Sebastian D. Huber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1–8 and Supplementary References.

Supplementary Video 1

Video showing the frequency response in momentum space as a function of excitation frequency.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peri, V., Serra-Garcia, M., Ilan, R. et al. Axial-field-induced chiral channels in an acoustic Weyl system. Nat. Phys. 15, 357–361 (2019).

Download citation

Further reading


Quick links