Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Axial-field-induced chiral channels in an acoustic Weyl system

Abstract

Condensed-matter and other engineered systems, such as cold atoms1, photonic2 or phononic metamaterials3, have proved to be versatile platforms for the observation of low-energy counterparts of elementary particles from relativistic field theories. These include the celebrated Majorana modes4, as well as Dirac5,6 and Weyl fermions7,8,9. An intriguing feature of the Weyl equation10 is the chiral symmetry, where the two chiral sectors have an independent gauge freedom. Although this freedom leads to a quantum anomaly11,12,13,14,15, there is no corresponding axial background field coupling differently to opposite chiralities in quantum electrodynamics. Here, we provide the experimental characterization of the effect of such an axial field in an acoustic metamaterial. We implement the axial field through an inhomogeneous potential16 and observe the induced chiral Landau levels. From the metamaterials perspective these chiral channels open the possibility for the observation of non-local Weyl orbits17 and might enable unidirectional bulk transport in a time-reversal-invariant system18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inhomogeneous WP separation and axial magnetic fields.
Fig. 2: Observation of chiral Landau levels.
Fig. 3: Characterization of surface Fermi arcs.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Roy, S., Kolodrubetz, M., Goldman, N. & Grushin, A. G. Tunable axial gauge fields in engineered Weyl semimetals: semiclassical analysis and optical lattice implementations. 2D Mater. 5, 024001 (2018).

    Article  Google Scholar 

  2. Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  3. Li, F., Huang, X., Lu, J., Ma, J. & Liu, Z. Weyl points and Fermi arcs in a chiral phononic crystal. Nat. Phys. 14, 30–34 (2017).

    Article  Google Scholar 

  4. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  ADS  Google Scholar 

  5. Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

    Article  ADS  Google Scholar 

  6. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    Article  ADS  Google Scholar 

  7. Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  8. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  ADS  Google Scholar 

  9. Lv, B. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  10. Weyl, H. Elektron und Gravitation. I. Z. Phys. 56, 330–352 (1929).

    Article  ADS  Google Scholar 

  11. Adler, S. L. Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969).

    Article  ADS  Google Scholar 

  12. Bell, J. S. & Jackiw, R. A PCAC puzzle: π 0γγ in the σ-model. Nuovo Cimento 60, 47–61 (1969).

    Article  ADS  Google Scholar 

  13. Bertlmann, R. A. Anomalies in Quantum Field Theory (Oxford University Press, Oxford, 2000).

    Book  Google Scholar 

  14. Landsteiner, K. Notes on anomaly induced transport. Acta Phys. Pol. B 47, 2617 (2016).

    Article  ADS  Google Scholar 

  15. Gooth, J. et al. Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP. Nature 547, 324–327 (2017).

    Article  ADS  Google Scholar 

  16. Pikulin, D. I., Chen, A. & Franz, M. Chiral anomaly from strain-induced gauge fields in Dirac and Weyl semimetals. Phys. Rev. X 6, 041021 (2016).

    Google Scholar 

  17. Potter, A. C., Kimchi, I. & Vishwanath, A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat. Commun. 5, 5161 (2014).

    Article  ADS  Google Scholar 

  18. Huber, S. D. Topological mechanics. Nat. Phys. 12, 621–623 (2016).

    Article  Google Scholar 

  19. Nielsen, H. & Ninomia, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  20. Bernevig, B. A. It’s been a Weyl coming. Nat. Phys. 11, 698–699 (2015).

    Article  Google Scholar 

  21. Yang, L. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    Article  Google Scholar 

  22. Moll, P. J. W. et al. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2. Nature 535, 266–270 (2016).

    Article  ADS  Google Scholar 

  23. v. Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  24. Xiao, M., Chen, W.-J., He, W.-Y. & Chan, C. T. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920–924 (2015).

    Article  Google Scholar 

  25. He, H. et al. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature 560, 61–64 (2018).

    Article  ADS  Google Scholar 

  26. Vozmediano, M. A. H., Katsnelson, M. I. & Guinea, F. Gauge fields in graphene. Phys. Rep. 496, 109 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  27. Liu, C.-X., Ye, P. & Qi, X.-L. Chiral gauge field and axial anomaly in a Weyl semimetal. Phys. Rev. B 87, 235306 (2013).

    Article  ADS  Google Scholar 

  28. Cortjio, A., Ferreirós, Y., Landsteiner, K. & Vozmediano, M. A. H. Elastic gauge fields in Weyl semimetals. Phys. Rev. Lett. 115, 177202 (2015).

    Article  ADS  Google Scholar 

  29. Grushin, A. G., Venderbros, J. W. F., Vishwanath, A. & Ilan, R. Inhomogeneous Weyl and Dirac semimetals: transport in axial magnetic fields and Fermi arc surface states from pseudo-Landau levels. Phys. Rev. X 6, 041046 (2016).

    Google Scholar 

  30. Sumiyoshi, H. & Fujimoto, S. Torsional chiral magnetic effect in a Weyl semimetal with a topological defect. Phys. Rev. Lett. 116, 166601 (2016).

    Article  ADS  Google Scholar 

  31. Abbaszadeh, H., Souslov, A., Paulose, J., Schomerus, H. & Vitelli, V. Sonic Landau-level lasing and synthetic gauge fields in mechanical metamaterials. Phys. Rev. Lett. 119, 195502 (2017).

    Article  ADS  Google Scholar 

  32. Levy, N. et al. Strain-induced pseudo–magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544–547 (2010).

    Article  ADS  Google Scholar 

  33. Ni, X., Weiner, M., Alù, A. & Khanikaev, A. B. Observation of bulk polarization transitions and higher-order embedded topological eigenstates for sound. Preprint at https://arxiv.org/abs/1807.00896 (2018).

  34. Xu, Y., Wang, S.-T. & Duan, L.-M. Weyl exceptional rings in a three-dimensional dissipative cold atomic gas. Phys. Rev. Lett. 118, 045701 (2017).

    Article  ADS  Google Scholar 

  35. Yang, Z., Gao, Z., Yang, Y. & Zhang, B. Strain-induced gauge field and Landau levels in acoustic structures. Phys. Rev. Lett. 118, 194301 (2017).

    Article  ADS  Google Scholar 

  36. Wen, X. et al. Observation of acoustic Landau quantization and quantum-Hall-like edge states. Preprint at https://arXiv.org/abs/1807.08454 (2018).

  37. Fukushima, K., Kahrzeev, D. E. & Warringa, H. J. Chiral magnetic effect. Phys. Rev. D 78, 074033 (2008).

    Article  ADS  Google Scholar 

  38. Liu, T., Pikulin, D. I. & Franz, M. Quantum oscillations without magnetic field. Phys. Rev. B 95, 041201(R) (2017).

    Article  ADS  Google Scholar 

  39. Lee, C.-H. et al. Topolectrical circuits. Commun. Phys. 1, 39 (2018).

    Article  Google Scholar 

  40. Fruchart, M. et al. Soft self-assembly of Weyl materials for light and sound. Proc. Natl Acad. Sci. USA 115, E3655 (2018).

    Article  Google Scholar 

  41. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge insightful discussions with D. Pikulin and A. Stern. We are grateful for financial support from the Swiss National Science Foundation, the NCCR QSIT. This work has received funding from the European Research Council under grant agreement no. 771503.

Author information

Authors and Affiliations

Authors

Contributions

S.D.H., R.I. and V.P. performed the theoretical part of this work. M.S.-G. and V.P. conducted the experiments. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Sebastian D. Huber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1–8 and Supplementary References.

Supplementary Video 1

Video showing the frequency response in momentum space as a function of excitation frequency.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peri, V., Serra-Garcia, M., Ilan, R. et al. Axial-field-induced chiral channels in an acoustic Weyl system. Nat. Phys. 15, 357–361 (2019). https://doi.org/10.1038/s41567-019-0415-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0415-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing