High-dimensional one-way quantum processing implemented on d-level cluster states

Abstract

Taking advantage of quantum mechanics for executing computational tasks faster than classical computers1 or performing measurements with precision exceeding the classical limit2,3 requires the generation of specific large and complex quantum states. In this context, cluster states4 are particularly interesting because they can enable the realization of universal quantum computers by means of a ‘one-way’ scheme5, where processing is performed through measurements6. The generation of cluster states based on sub-systems that have more than two dimensions, d-level cluster states, provides increased quantum resources while keeping the number of parties constant7, and also enables novel algorithms8. Here, we experimentally realize, characterize and test the noise sensitivity of three-level, four-partite cluster states formed by two photons in the time9 and frequency10 domain, confirming genuine multi-partite entanglement with higher noise robustness compared to conventional two-level cluster states6,11,12,13. We perform proof-of-concept high-dimensional one-way quantum operations, where the cluster states are transformed into orthogonal, maximally entangled d-level two-partite states by means of projection measurements. Our scalable approach is based on integrated photonic chips9,10 and optical fibre communication components, thus achieving new and deterministic functionalities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Time-frequency hyper-entanglement scheme.
Fig. 2: Generation of d-level cluster states with a controlled phase gate.
Fig. 3: Experimental demonstration of cluster state generation and related noise characteristics.
Fig. 4: High-dimensional one-way computation operations by measurement-based generation of orthogonal d-level two-party entangled quantum states.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Israel, Y., Rosen, S. & Silberberg, Y. Supersensitive polarization microscopy using NOON states of light. Phys. Rev. Lett. 112, 103604 (2014).

    ADS  Article  Google Scholar 

  3. 3.

    Hodaei, H. et al. Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Briegel, H. J. & Raussendorf, R. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001).

    ADS  Article  Google Scholar 

  5. 5.

    Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    ADS  Article  Google Scholar 

  6. 6.

    Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    ADS  Article  Google Scholar 

  7. 7.

    Zhou, D., Zeng, B., Xu, Z. & Sun, C. Quantum computation based on d-level cluster state. Phys. Rev. A 68, 062303 (2003).

    ADS  Article  Google Scholar 

  8. 8.

    Wang, D.-S., Stephen, D. T. & Raussendorf, R. Qudit quantum computation on matrix product states with global symmetry. Phys. Rev. A 95, 032312 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Yao, X.-C. et al. Experimental demonstration of topological error correction. Nature 482, 489–494 (2012).

    ADS  Article  Google Scholar 

  12. 12.

    Lanyon, B. P. et al. Measurement-based quantum computation with trapped ions. Phys. Rev. Lett. 111, 210501 (2013).

    ADS  Article  Google Scholar 

  13. 13.

    Lu, C. Y. et al. Experimental entanglement of six photons in graph states. Nat. Phys. 3, 91–95 (2007).

    Article  Google Scholar 

  14. 14.

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  Article  Google Scholar 

  15. 15.

    Pysher, M., Miwa, Y., Shahrokhshahi, R., Bloomer, R. & Pfister, O. Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys. Rev. Lett. 107, 030505 (2011).

    ADS  Article  Google Scholar 

  16. 16.

    Yokoyama, S. et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photon. 7, 982–986 (2013).

    ADS  Article  Google Scholar 

  17. 17.

    Lloyd, S. & Braunstein, S. L. Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784–1787 (1999).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Blatt, R. & Wineland, D. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008).

    ADS  Article  Google Scholar 

  19. 19.

    Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Dada, A. C., Leach, J., Buller, G. S., Padgett, M. J. & Andersson, E. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 7, 677–680 (2011).

    Article  Google Scholar 

  21. 21.

    Gräfe, M. et al. On-chip generation of high-order single-photon W-states. Nat. Photon. 8, 791–795 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    Malik, M. et al. Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248–252 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Barreiro, J., Langford, N., Peters, N. & Kwiat, P. Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005).

    ADS  Article  Google Scholar 

  24. 24.

    Chen, K. et al. Experimental realization of one-way quantum computing with two-photon four-qubit cluster states. Phys. Rev. Lett. 99, 120503 (2007).

    ADS  Article  Google Scholar 

  25. 25.

    Vallone, G., Pomarico, E., Mataloni, P., Martini, F. De & Berardi, V. Realization and characterization of a two-photon four-qubit linear cluster state. Phys. Rev. Lett. 98, 180502 (2007).

    ADS  Article  Google Scholar 

  26. 26.

    Gao, W.-B. et al. Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state. Nat. Phys. 6, 331–335 (2010).

    Article  Google Scholar 

  27. 27.

    O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).

    ADS  Article  Google Scholar 

  28. 28.

    Humphreys, P. C. et al. Linear optical quantum computing in a single spatial mode. Phys. Rev. Lett. 111, 150501 (2013).

    ADS  Article  Google Scholar 

  29. 29.

    Lu, H.-H. et al. Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing. Phys. Rev. Lett. 120, 030502 (2018).

    ADS  Article  Google Scholar 

  30. 30.

    Wang, X. L. et al. Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Wang, X.-L. et al. 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett. 120, 260502 (2018).

    ADS  Article  Google Scholar 

  32. 32.

    Prevedel, R. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007).

    ADS  Article  Google Scholar 

  33. 33.

    Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    ADS  Article  Google Scholar 

  34. 34.

    Pasquazi, A. et al. Micro-combs: A novel generation of optical sources. Phys. Rep. 729, 1–81 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017).

    Article  Google Scholar 

  36. 36.

    Kwiat, P. G. Hyper-entangled states. J. Mod. Opt. 44, 2173–2184 (1997).

    ADS  MathSciNet  Article  Google Scholar 

  37. 37.

    Brendel, J., Gisin, N., Tittel, W. & Zbinden, H. Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594–2597 (1999).

    ADS  Article  Google Scholar 

  38. 38.

    Olislager, L. et al. Frequency-bin entangled photons. Phys. Rev. A 82, 013804 (2010).

    ADS  Article  Google Scholar 

  39. 39.

    Loranger, S., Karpov, V., Schinn, G. W. & Kashyap, R. Single-frequency low-threshold linearly polarized DFB Raman fiber lasers. Opt. Lett. 42, 3864–3867 (2017).

    ADS  Article  Google Scholar 

  40. 40.

    Xiong, C. et al. Compact and reconfigurable silicon nitride time-bin entanglement circuit. Optica 2, 724–727 (2015).

    ADS  Article  Google Scholar 

  41. 41.

    Lukens, J. M. & Lougovski, P. Frequency-encoded photonic qubits for scalable quantum information processing. Optica 4, 8–16 (2017).

    ADS  Article  Google Scholar 

  42. 42.

    Imany, P. et al. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Opt. Lett. 26, 1825–1840 (2018).

    Google Scholar 

  43. 43.

    Li, X.-H. & Ghose, S. Complete hyperentangled Bell state analysis for polarization and time-bin hyperentanglement. Opt. Express 24, 18388–18398 (2016).

    ADS  Article  Google Scholar 

  44. 44.

    Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    ADS  Article  Google Scholar 

  45. 45.

    Franson, J. D. Bell inequality for position and time. Phys. Rev. Lett. 62, 2205–2208 (1989).

    ADS  Article  Google Scholar 

  46. 46.

    Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).

    ADS  Article  Google Scholar 

  47. 47.

    Soudagar, Y. et al. Cluster-state quantum computing in optical fibers. J. Opt. Soc. Am. B 24, 226–230 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  48. 48.

    Hein, M., Eisert, J. & Briegel, H. J. Multiparty entanglement in graph states. Phys. Rev. A 69, 062311 (2004).

    ADS  MathSciNet  Article  Google Scholar 

  49. 49.

    Bourennane, M. et al. Experimental detection of multipartite entanglement using witness operators. Phys. Rev. Lett. 92, 087902 (2004).

    ADS  Article  Google Scholar 

  50. 50.

    Toth, G. & Guehne, O. Entanglement detection in the stabilizer formalism. Phys. Rev. A 72, 022340 (2005).

    ADS  Article  Google Scholar 

  51. 51.

    Nielsen, M. A. Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436–439 (1999).

    ADS  Article  Google Scholar 

  52. 52.

    Lawrence, J. Mutually unbiased bases and trinary operator sets for N qutrits. Phys. Rev. A 70, 012302 (2004).

    ADS  MathSciNet  Article  Google Scholar 

  53. 53.

    Collins, D., Gisin, N., Linden, N., Massar, S. & Popescu, S. Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Steacie, Strategic, Discovery and Acceleration Grants Schemes, by the MESI PSR-SIIRI Initiative in Quebec, by the Canada Research Chair Program and by the Australian Research Council Discovery Projects scheme (DP150104327). C.R., P.R. and S.L. acknowledge the support of NSERC Vanier Canada Graduate Scholarships. M.K. acknowledges funding from the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie grant agreement number 656607. S.T.C. acknowledges support from the CityU APRC programme number 9610356. B.E.L. acknowledges support from the Strategic Priority Research Program of the Chinese Academy of Sciences (grant number XDB24030300). W.J.M. acknowledges support from the John Templeton Foundation (JTF) number 60478. R.M. acknowledges additional support by the Government of the Russian Federation through the ITMO Fellowship and Professorship Program (grant 074-U 01) and from the 1000 Talents Sichuan Program. We thank R. Helsten for technical insights; A. Tavares and K. Nemoto for discussions; P. Kung from QPS Photronics for help and the use of processing equipment; and Quantum Opus and N. Bertone of OptoElectronics Components for their support and for providing us with state-of-the-art photon detection equipment.

Author information

Affiliations

Authors

Contributions

C.R. and M.K. contributed equally. M.K., C.R., P.R., and S.S. developed the idea. C.R., M.K. P.R., M.I., Y.Z., L.R.C., and B.F. performed the measurements and analyzed the data. S.S., C.R., M.K., L.C., and W.J.M. performed the theoretical analysis. S.T.C. and B.E.L. designed and fabricated the microring resonator. S.L. and R.K. designed and fabricated the fibre Bragg gratings. D.J.M. and A.C. contributed to discussions. R.M. and J.A. managed the project. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Michael Kues or Roberto Morandotti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reimer, C., Sciara, S., Roztocki, P. et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nature Phys 15, 148–153 (2019). https://doi.org/10.1038/s41567-018-0347-x

Download citation