Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube

Abstract

Lorentz symmetry is a fundamental spacetime symmetry underlying both the standard model of particle physics and general relativity. This symmetry guarantees that physical phenomena are observed to be the same by all inertial observers. However, unified theories, such as string theory, allow for violation of this symmetry by inducing new spacetime structure at the quantum gravity scale. Thus, the discovery of Lorentz symmetry violation could be the first hint of these theories in nature. Here we report the results of the most precise test of spacetime symmetry in the neutrino sector to date. We use high-energy atmospheric neutrinos observed at the IceCube Neutrino Observatory to search for anomalous neutrino oscillations as signals of Lorentz violation. We find no evidence for such phenomena. This allows us to constrain the size of the dimension-four operator in the standard-model extension for Lorentz violation to the \(10^{-28}\) level and to set limits on higher-dimensional operators in this framework. These are among the most stringent limits on Lorentz violation set by any physical experiment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Test of LV with atmospheric neutrinos.
Fig. 2: The ratio of vertical to horizontal neutrino transition probabilities at IceCube.
Fig. 3: The excluded parameter space region for the dimension-six SME coefficients.

References

  1. 1.

    Kostelecký, V. A. & Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 39, 683–685 (1989).

    ADS  Article  Google Scholar 

  2. 2.

    Carroll, S. M., Harvey, J. A., Kostelecký, V. A., Lane, C. D. & Okamoto, T. Noncommutative Field Theory and Lorentz Violation. Phys. Rev. Lett. 87, 141601 (2001).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Groot Nibbelink, S. & Pospelov, M. Lorentz violation in supersymmetric field theories. Phys. Rev. Lett. 94, 081601 (2005).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Kostelecký, A. & Mewes, M. Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 85, 096005 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Komatsu, E. et al. Five-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 180, 330–376 (2009).

    ADS  Article  Google Scholar 

  6. 6.

    Kostelecký, V. A. & Mewes, M. Constraints on relativity violations from gamma-ray bursts. Phys. Rev. Lett. 110, 201601 (2013).

    ADS  Article  Google Scholar 

  7. 7.

    Kostelecký, V. A., Melissinos, A. C. & Mewes, M. Searching for photon-sector Lorentz violation using gravitational-wave detectors. Phys. Lett. B 761, 1–7 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Nagel, M. et al. Direct terrestrial test of Lorentz symmetry in electrodynamics to 10−18. Nat. Commun. 6, 8174 (2015).

    Article  Google Scholar 

  9. 9.

    Maccione, L., Taylor, A. M., Mattingly, D. M. & Liberati, S. Planck-scale Lorentz violation constrained by ultra-high-energy cosmic rays. J. Cosmol. Astropart. Phys. 0904, 022 (2009).

    ADS  Article  MATH  Google Scholar 

  10. 10.

    Allmendinger, F. et al. New limit on Lorentz-invariance- and CPT-violating neutron spin interactions using a free-spin-precession 3He-129Xe comagnetometer. Phys. Rev. Lett. 112, 110801 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Smiciklas, M., Brown, J. M., Cheuk, L. W. & Romalis, M. V. A new test of local Lorentz invariance using 21Ne-Rb-K comagnetometer. Phys. Rev. Lett. 107, 171604 (2011).

    ADS  Article  Google Scholar 

  12. 12.

    Heckel, B. R. et al. New CP-violation and preferred-frame tests with polarized electrons. Phys. Rev. Lett. 97, 021603 (2006).

    ADS  Article  Google Scholar 

  13. 13.

    Bennett, G. W. et al. Search for Lorentz and CPT violation effects in muon spin precession. Phys. Rev. Lett. 100, 091602 (2008).

    ADS  Article  Google Scholar 

  14. 14.

    Pruttivarasin, T. et al. A Michelson–Morley test of Lorentz symmetry for electrons. Nature 517, 592–595 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Kostelecký, V. A. & Tasson, J. D. Constraints on Lorentz violation from gravitational Čerenkov radiation. Phys. Lett. B 749, 551–559 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Abbasi, R. et al. Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II. Phys. Rev. D 79, 102005 (2009).

    ADS  Article  Google Scholar 

  17. 17.

    Abbasi, R. et al. Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube. Phys. Rev. D 82, 112003 (2010).

    ADS  Article  Google Scholar 

  18. 18.

    Abe, K. et al. Test of Lorentz invariance with atmospheric neutrinos. Phys. Rev. D 91, 052003 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Kostelecký, V. A. & Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 83, 11–31 (2011).

    ADS  Article  Google Scholar 

  20. 20.

    Liberati, S. Tests of Lorentz invariance: a 2013 update. Class. Quant. Grav. 30, 133001 (2013).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Fukuda, Y. et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998).

    ADS  Article  Google Scholar 

  22. 22.

    Ahmad, Q. R. et al. Measurement of the rate of ν e + dp + p + e− interactions produced by 8 B solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 87, 071301 (2001).

  23. 23.

    Ahn, M. H. et al. Indications of neutrino oscillation in a 250 km long baseline experiment. Phys. Rev. Lett. 90, 041801 (2003).

    ADS  Article  Google Scholar 

  24. 24.

    Eguchi, K. et al. First results from KamLAND: Evidence for reactor anti-neutrino disappearance. Phys. Rev. Lett. 90, 021802 (2003).

    ADS  Article  Google Scholar 

  25. 25.

    Abe, K. et al. Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. Phys. Rev. Lett. 107, 041801 (2011).

    ADS  Article  Google Scholar 

  26. 26.

    An, F. P. et al. Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 108, 171803 (2012).

    ADS  Article  Google Scholar 

  27. 27.

    Esteban, I., Gonzalez-Garcia, M. C., Maltoni, M., Martinez-Soler, I. & Schwetz, T. Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity. J. High Energy Phys. 1701, 087 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Aartsen, M. G. et al. Evidence for astrophysical muon neutrinos from the northern sky with IceCube. Phys. Rev. Lett. 115, 081102 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Gonzalez-Garcia, M. C., Halzen, F. & Maltoni, M. Physics reach of high-energy and high-statistics IceCube atmospheric neutrino data. Phys. Rev. D 71, 093010 (2005).

    ADS  Article  Google Scholar 

  30. 30.

    Abbasi, R. et al. The IceCube data acquisition system: signal capture, digitization, and timestamping. Nucl. Instrum. Meth. A 601, 294–316 (2009).

    ADS  Article  Google Scholar 

  31. 31.

    Aartsen, M. G. et al. The IceCube Neutrino Observatory: instrumentation and online systems. J. Instrum. 12, P03012 (2017).

    Article  Google Scholar 

  32. 32.

    Weaver, C. N. Evidence for Astrophysical Muon Neutrinos from the Northern Sky. PhD thesis, Univ. Wisconsin–Madison (2015).

  33. 33.

    Fedynitch, A., Engel, R., Gaisser, T. K., Riehn, F. & Stanev, T. Calculation of conventional and prompt lepton fluxes at very high energy. Eur. Phys. J. Web Conf. 99, 08001 (2015).

    Article  Google Scholar 

  34. 34.

    Jones, B. J. P. Sterile Neutrinos in Cold Climates. PhD thesis, MIT (2015).

  35. 35.

    Argüelles Delgado, C. A. New Physics with Atmospheric Neutrinos. PhD thesis, Univ. Wisconsin–Madison (2015).

  36. 36.

    Cooper-Sarkar, A. & Sarkar, S. Predictions for high energy neutrino cross-sections from the ZEUS global PDF fits. J. High Energy Phys. 0801, 075 (2008).

    ADS  Article  Google Scholar 

  37. 37.

    Aartsen, M. G. et al. Searches for sterile neutrinos with the IceCube detector. Phys. Rev. Lett. 117, 071801 (2016).

    ADS  Article  Google Scholar 

  38. 38.

    Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    ADS  Article  Google Scholar 

  39. 39.

    Aartsen, M. G. et al. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Phys. Rev. D 91, 072004 (2015).

    ADS  Article  Google Scholar 

  40. 40.

    Harris, R. A. & Stodolsky, L. Two state systems in media and “Turing’s paradox”. Phys. Lett. B 116, 464–468 (1982).

    ADS  Article  Google Scholar 

  41. 41.

    Abraham, J. et al. Observation of the suppression of the flux of cosmic rays above 4 x 1019eV. Phys. Rev. Lett. 101, 061101 (2008).

    ADS  Article  Google Scholar 

  42. 42.

    Aab, A. et al. Evidence for a mixed mass composition at the ‘ankle’ in the cosmic-ray spectrum. Phys. Lett. B 762, 288–295 (2016).

    ADS  Article  Google Scholar 

  43. 43.

    Chalmers, M. Interview: Steven Weinberg. CERN Courier 57, 31–35 (2017).

    Google Scholar 

  44. 44.

    Aartsen, M. G. et al. Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science 342, 1242856 (2013).

    Article  Google Scholar 

  45. 45.

    Stecker, F. W., Scully, S. T., Liberati, S. & Mattingly, D. Searching for traces of Planck-scale physics with high energy neutrinos. Phys. Rev. D 91, 045009 (2015).

    ADS  Article  Google Scholar 

  46. 46.

    Argüelles, C. A., Katori, T. & Salvado, J. New physics in astrophysical neutrino flavor. Phys. Rev. Lett. 115, 161303 (2015).

    ADS  Article  Google Scholar 

  47. 47.

    Aartsen, M. G. et al. Measurement of South Pole ice transparency with the IceCube LED calibration system. Nucl. Instrum. Meth. A 711, 73–89 (2013).

    ADS  Article  Google Scholar 

  48. 48.

    Aartsen, M. G. et al. Measurement of the atmospheric ν e spectrum with IceCube. Phys. Rev. D 91, 122004 (2015).

    ADS  Article  Google Scholar 

  49. 49.

    Adrian-Martinez, S. et al. Letter of intent for KM3NeT 2.0. J. Phys. G 43, 084001 (2016).

    ADS  Article  Google Scholar 

  50. 50.

    Aartsen, M. G. et al. IceCube-Gen2: a vision for the future of neutrino astronomy in Antarctica. Preprint at https://arxiv.org/abs/1412.5106 (2014).

  51. 51.

    Altmann, M. et al. GNO solar neutrino observations: Results for GNO I. Phys. Lett. B 490, 16–26 (2000).

    ADS  Article  Google Scholar 

  52. 52.

    Abdurashitov, J. N. et al. Solar neutrino flux measurements by the Soviet–American Gallium Experiment(SAGE) for half the 22 year solar cycle. J. Exp. Theor. Phys. 95, 181 (2002).

    ADS  Article  Google Scholar 

  53. 53.

    Hosaka, J. et al. Solar neutrino measurements in super-Kamiokande-I. Phys. Rev. D. 73, 112001 (2006).

    ADS  Article  Google Scholar 

  54. 54.

    Aharmim, B. et al. Electron energy spectra, fluxes, and day–night asymmetries of B-8 solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory. Phys. Rev. C 72, 055502 (2005).

    ADS  Article  Google Scholar 

  55. 55.

    Arpesella, C. et al. Direct measurement of the Be-7 solar neutrino flux with 192 days of Borexino data. Phys. Rev. Lett. 101, 091302 (2008).

    ADS  Article  Google Scholar 

  56. 56.

    Ashie, Y. et al. Evidence for an oscillatory signature in atmospheric neutrino oscillation. Phys. Rev. Lett. 93, 101801 (2004).

    ADS  Article  Google Scholar 

  57. 57.

    Adamson, P. et al. Combined analysis of ν μ disappearance and ν μν e appearance in MINOS using accelerator and atmospheric neutrinos. Phys. Rev. Lett. 112, 191801 (2014).

    ADS  Article  Google Scholar 

  58. 58.

    Aartsen, M. G. et al. Measurement of atmospheric neutrino oscillations at 6–56 GeV with IceCube DeepCore. Phys. Rev. Lett. 120, 071801 (2018).

    ADS  Article  Google Scholar 

  59. 59.

    Abe, S. et al. Precision measurement of neutrino oscillation parameters with KamLAND. Phys. Rev. Lett. 100, 221803 (2008).

    ADS  Article  Google Scholar 

  60. 60.

    Abe, Y. et al. Indication of reactor disappearance in the Double Chooz experiment. Phys. Rev. Lett. 108, 131801 (2012).

    ADS  Article  Google Scholar 

  61. 61.

    Ahn, J. K. et al. Observation of reactor electron antineutrino disappearance in the RENO experiment. Phys. Rev. Lett. 108, 191802 (2012).

    ADS  Article  Google Scholar 

  62. 62.

    An, F. P. et al. Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay. Phys. Rev. Lett. 112, 061801 (2014).

    ADS  Article  Google Scholar 

  63. 63.

    Abe, K. et al. Combined analysis of neutrino and antineutrino oscillations at T2K. Phys. Rev. Lett. 118, 151801 (2017).

    ADS  Article  Google Scholar 

  64. 64.

    Adamson, P. et al. Constraints on oscillation parameters from ν e appearance and ν μ disappearance in NOvA. Phys. Rev. Lett. 118, 231801 (2017).

    ADS  Article  Google Scholar 

  65. 65.

    Coleman, S. R. & Glashow, S. L. High-energy tests of Lorentz invariance. Phys. Rev. D 59, 116008 (1999).

    ADS  Article  Google Scholar 

  66. 66.

    Amelino-Camelia, G., Ellis, J. R., Mavromatos, N. E., Nanopoulos, D. V. & Sarkar, S. Tests of quantum gravity from observations of gamma-ray bursts. Nature 393, 763–765 (1998).

    ADS  Article  Google Scholar 

  67. 67.

    Colladay, D. & Kostelecký, V. A. CPT violation and the standard model. Phys. Rev. D. 55, 6760–6774 (1997).

    ADS  Article  Google Scholar 

  68. 68.

    Colladay, D. & Kostelecký, V. A. Lorentz violating extension of the standard model. Phys. Rev. D. 58, 116002 (1998).

    ADS  Article  Google Scholar 

  69. 69.

    Kostelecký, V. A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D. 69, 105009 (2004).

    ADS  Article  Google Scholar 

  70. 70.

    Auerbach, L. B. et al. Tests of Lorentz violation in \({\bar{\nu }}_{\mu }\to {\bar{\nu }}_{e}\) oscillations. Phys. Rev. D 72, 076004 (2005).

  71. 71.

    Aguilar-Arevalo, A. A. et al. Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses. Phys. Lett. B 718, 1303–1308 (2013).

    ADS  Article  Google Scholar 

  72. 72.

    Adamson, P. et al. Testing Lorentz invariance and CPT conservation with NuMI neutrinos in the MINOS near detector. Phys. Rev. Lett. 101, 151601 (2008).

    ADS  Article  Google Scholar 

  73. 73.

    Adamson, P. et al. A search for Lorentz invariance and CPT violation with the MINOS far detector. Phys. Rev. Lett. 105, 151601 (2010).

    ADS  Article  Google Scholar 

  74. 74.

    Adamson, P. et al. Search for Lorentz invariance and CPT violation with muon antineutrinos in the MINOS near detector. Phys. Rev. D 85, 031101 (2012).

    ADS  Article  Google Scholar 

  75. 75.

    Rebel, B. & Mufson, S. The search for neutrino-antineutrino mixing resulting from Lorentz invariance violation using neutrino interactions in MINOS. Astropart. Phys. 48, 78–81 (2013).

    ADS  Article  Google Scholar 

  76. 76.

    Abe, Y. et al. First test of Lorentz violation with a reactor-based antineutrino experiment. Phys. Rev. D 86, 112009 (2012).

    ADS  Article  Google Scholar 

  77. 77.

    Díaz, J. S., Katori, T., Spitz, J. & Conrad, J. M. Search for neutrino-antineutrino oscillations with a reactor experiment. Phys. Lett. B 727, 412 (2013).

    ADS  Article  Google Scholar 

  78. 78.

    Diaz, J. S. & Schwetz, T. Limits on CPT violation from solar neutrinos. Phys. Rev. D 93, 093004 (2016).

    ADS  Article  Google Scholar 

  79. 79.

    Abe, K. et al. Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline. Phys. Rev. D 95, 111101 (2017).

    ADS  Article  Google Scholar 

  80. 80.

    Feroz, F., Hobson, M. P. & Bridges, M. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the following agencies: USA—US National Science Foundation–Office of Polar Programs, US National Science Foundation–Physics Division, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the University of Wisconsin–Madison, Open Science Grid (OSG), Extreme Science and Engineering Discovery Environment (XSEDE), US Department of Energy–National Energy Research Scientific Computing Center, Particle astrophysics research computing centre at the University of Maryland, Institute for Cyber-Enabled Research at Michigan State University and Astroparticle physics computational facility at Marquette University; Belgium—Funds for Scientific Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Belgian Federal Science Policy Office (Belspo); Germany—Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Deutsches Elektronen Synchrotron (DESY), and High Performance Computing cluster of the RWTH Aachen; Sweden—Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation; Australia—Australian Research Council; Canada—Natural Sciences and Engineering Research Council of Canada, Calcul Québec, Compute Ontario, Canada Foundation for Innovation, WestGrid and Compute Canada; Denmark—Villum Fonden, Danish National Research Foundation (DNRF); New Zealand—Marsden Fund; Japan—Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba University; Korea—National Research Foundation of Korea (NRF); Switzerland—Swiss National Science Foundation (SNSF); UK—Science and Technology Facilities Council (STFC) and The Royal Society.

Author information

Affiliations

Consortia

Contributions

The IceCube Collaboration designed, constructed and now operates the IceCube Neutrino Observatory. Data processing and calibration, Monte Carlo simulations of the detector and of theoretical models, and data analyses were performed by a large number of collaboration members, who also discussed and approved the scientific results presented here. The main authors of this manuscript were C. Argüelles, A. Kheirandish, G. Collin, S. Mandalia, J. Conrad and T. Katori. It was reviewed by the entire collaboration before publication, and all authors approved the final version of the manuscript.

Corresponding authors

Correspondence to C. Argüelles or G. H. Collin or J. M. Conrad or A. Kheirandish or T. Katori or S. Mandalia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures, notes and references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

The IceCube Collaboration., Aartsen, M.G., Hill, G.C. et al. Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube. Nature Phys 14, 961–966 (2018). https://doi.org/10.1038/s41567-018-0172-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing