Detecting the phonon spin in magnon–phonon conversion experiments


Recent advances in the emerging field of magnon spintronics have stimulated renewed interest in phenomena involving the interaction between spin waves, the collective excitations of spins in magnetic materials that quantize as magnons, and the elastic waves that arise from excitations in the crystal lattice, which quantize as phonons. In magnetic insulators, owing to the magnetostrictive properties of materials, spin waves can become strongly coupled to elastic waves, forming magnetoelastic waves—a hybridized magnon–phonon excitation. While several aspects of this interaction have been subject to recent scrutiny, it remains unclear whether or not phonons can carry spin. Here we report experiments on a film of the ferrimagnetic insulator yttrium iron garnet under a non-uniform magnetic field demonstrating the conversion of coherent magnons generated by a microwave field into phonons that have spin. While it is well established that photons in circularly polarized light carry a spin, the spin of phonons has had little attention in the literature. By means of wavevector-resolved Brillouin light-scattering measurements, we show that the magnon–phonon conversion occurs with constant energy and varying linear momentum, and that the light scattered by the phonons is circularly polarized, thus demonstrating that the phonons have spin.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematics of the sample structure and apparatus used in the time-resolved measurements of the time delay of spin wavepackets in a YIG film.
Fig. 2: Illustration of the magnon–phonon conversion process in a YIG film under a non-uniform magnetic field.
Fig. 3: Schematics of the BLS set-up for wavevector-resolved detection of magnetoelastic waves.
Fig. 4: Wavenumber-resolved BLS demonstration of the magnon–phonon conversion in a YIG film under a non-uniform magnetic field.
Fig. 5: Wavenumber-resolved BLS measurements of the polarization of the light scattered by magnetoelastic waves in a YIG film under a non-uniform magnetic field.


  1. 1.

    Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  Google Scholar 

  2. 2.

    Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG magnonics. J. Phys. D 43, 264002 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    Uchida, K. et al. Long-range spin Seebeck effect and acoustic spin pumping. Nat. Mater. 10, 737–741 (2011).

    ADS  Article  Google Scholar 

  4. 4.

    Weiler, M. et al. Spin pumping with coherent elastic waves. Phys. Rev. Lett. 108, 176601 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Kamra, A., Keshtgar, H., Yan, P. & Bauer, G. E. W. Coherent elastic excitation of spin waves. Phys. Rev. B 91, 104409 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Li, X., Labanowski, D., Salahuddin, S. & Lynch, C. S. Spin wave generation by surface acoustic waves. J. Appl. Phys. 122, 043904 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Kikkawa, T. et al. Magnon polarons in the spin Seebeck effect. Phys. Rev. Lett. 117, 207203 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Man, H. et al. Direct observation of magnon–phonon coupling in yttrium iron garnet. Phys. Rev. B 96, 100406(R) (2017).

    ADS  Article  Google Scholar 

  9. 9.

    Flebus, B. et al. Magnon–polaron transport in magnetic insulators. Phys. Rev. B 95, 144420 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Cornelissen, L. J. et al. Nonlocal magnon–polaron transport in yttrium iron garnet. Phys. Rev. B 96, 104441 (2017).

    ADS  Article  Google Scholar 

  11. 11.

    Bozhko, D. A. et al. Bottleneck accumulation of hybrid magnetoelastic bosons. Phys. Rev. Lett. 118, 237201 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Kamra, A. & Bauer, G. E. W. Actuation, propagation, and detection of transverse magnetoelastic waves in ferromagnets. Solid State Commun. 198, 35–39 (2014).

    ADS  Article  Google Scholar 

  13. 13.

    Ogawa, N. et al. Photodrive of magnetic bubbles via magnetoelastic waves. Proc. Natl Acad. Sci. USA 112, 8977–8981 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    An, K. et al. Magnons and phonons optically driven out of local equilibrium in a magnetic insulator. Phys. Rev. Lett. 117, 107202 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Kabos, P. & Stalmachov, V. S. Magnetostatic Waves and Their Applications (Chapman and Hall, London, 1994).

    Google Scholar 

  16. 16.

    Rezende, S. M. & Zagury, N. Coherent magnon states. Phys. Lett 29A, 47–48 (1969).

    ADS  Article  Google Scholar 

  17. 17.

    Zagury, N. & Rezende, S. M. Theory of macroscopic excitations of magnons. Phys. Rev. B 4, 201–209 (1971).

    ADS  Article  Google Scholar 

  18. 18.

    Damon, R. W. & Eshbach, J. R. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids 19, 308–320 (1961).

    ADS  Article  Google Scholar 

  19. 19.

    Stancil, D. D. & Prabhakar, A. Spin Waves: Theory and Applications (Springer, New York, 2009).

  20. 20.

    Rezende, S. M. Theory of coherence in Bose–Einstein condensation phenomena in a microwave driven interacting magnon gas. Phys. Rev. B 79, 174411 (2009).

    ADS  Article  Google Scholar 

  21. 21.

    Kittel, C. Interaction of spin waves and ultrasonic waves in ferromagnetic crystals. Phys. Rev. 110, 836–841 (1958).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Akhiezer, A. I., Bar’yakhtar, V. G. & Peletminskii, S. V. Spin Waves (North-Holland, Amsterdam, 1968).

    Google Scholar 

  23. 23.

    Gurevich, A. G. & Melkov, G. A. Magnetization Oscillations and Waves (CRC, Boca Raton, 1994).

  24. 24.

    Schlömann, E. & Joseph, R. I. Generation of spin waves in nonuniform magnetic fields. III. Magnetoelastic interaction. J. Appl. Phys. 35, 2382–2390 (1964).

    ADS  Article  Google Scholar 

  25. 25.

    Rezende, S. M. & Morgenthaler, F. R. Magnetoelastic waves in time‐varying magnetic fields. I. Theory, II. Experiments. J. Appl. Phys. 40, 524–545 (1969).

    ADS  Article  Google Scholar 

  26. 26.

    Guerreiro, S. C. & Rezende, S. M. Magnon–phonon interconversion in a dynamically reconfigurable magnetic material. Phys. Rev. B 92, 214437 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Rückriegel, A., Kopietz, P., Bozhko, D. A., Serga, A. A. & Hillebrands, B. Magnetoelastic modes and lifetime of magnons in thin yttrium iron garnet films. Phys. Rev. B 89, 184413 (2014).

    ADS  Article  Google Scholar 

  28. 28.

    Kane, E. O. Theory of tunneling. J. Appl. Phys. 32, 83–91 (1961).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Eshbach, J. R. Spin-wave propagation and the magnetoelastic interaction in yttrium iron garnet. Phys. Rev. Lett. 8, 357–359 (1962).

    ADS  Article  Google Scholar 

  30. 30.

    Strauss, W. Magnetoelastic waves in yttrium iron garnet. J. Appl. Phys. 36, 118–123 (1965).

    ADS  Article  Google Scholar 

  31. 31.

    Auld, B. A., Collins, J. H. & Webb, D. C. Excitation of magnetoelastic waves in YIG delay lines. J. Appl. Phys. 39, 1598–1602 (1968).

    ADS  Article  Google Scholar 

  32. 32.

    Smith, K. R., Kabatek, M. J., Krivosik, P. & Wu, M. Spin wave propagation in spatially nonuniform magnetic fields. J. Appl. Phys. 104, 043911 (2008).

    ADS  Article  Google Scholar 

  33. 33.

    Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

    ADS  Article  Google Scholar 

  34. 34.

    Sandweg, C. W. et al. Wide-range wavevector selectivity of magnon gases in Brillouin light scattering spectroscopy. Rev. Sci. Instrum. 81, 073902 (2010).

    ADS  Article  Google Scholar 

  35. 35.

    Heitler, W. The Quantum Theory of Radiation (Oxford Univ. Press, New York, 1944).

    Google Scholar 

  36. 36.

    Leach, J. et al. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. Phys. Rev. Lett. 92, 013601 (2002).

    ADS  Article  Google Scholar 

  37. 37.

    Yao, A. M. & Padgett, M. J. Optical angular momentum: origins, behavior, and applications. Adv. Opt. Photon. 3, 161–204 (2011).

    Article  Google Scholar 

  38. 38.

    Zhang, L. & Niu, Q. Angular momentum of phonons and the Einstein–de Haas effect. Phys. Rev. Lett. 112, 085503 (2014).

    ADS  Article  Google Scholar 

  39. 39.

    Garanin, D. A. & Chudnovsky, E. M. Angular momentum in spin-phonon processes. Phys. Rev. B 92, 024421 (2015).

    ADS  Article  Google Scholar 

  40. 40.

    Cottam, M. G. & Lockwood, D. J. Light Scattering in Magnetic Solids (Wiley, New York, 1986).

    Google Scholar 

  41. 41.

    White R. M., Quantum Theory of Magnetism, 3rd edn (Springer-Verlag, Berlin, 2007).

  42. 42.

    Jaworski, C. M. et al. Spin-Seebeck effect: a phonon driven spin distribution. Phys. Rev. Lett. 106, 186601 (2011).

    ADS  Article  Google Scholar 

Download references


This research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Financiadora de Estudos e Projetos (FINEP) and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE).

Author information




All experimental arrangements and measurements were performed by J.H. and D.S.M. with consultation from A.A. and S.M.R. A.A. prepared the YIG films using liquid phase epitaxy. Calculations were performed by S.M.R. and J.H. Supervision of the work was carried out by S.M.R., who wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to S. M. Rezende.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, Supplementary figures 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Holanda, J., Maior, D.S., Azevedo, A. et al. Detecting the phonon spin in magnon–phonon conversion experiments. Nature Phys 14, 500–506 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing