Anomalous Hall effect in ZrTe5

Abstract

Research in topological matter has expanded to include the Dirac and Weyl semimetals1,2,3,4,5,6,7,8,9,10, which feature three-dimensional Dirac states protected by symmetry. Zirconium pentatelluride has been of recent interest as a potential Dirac or Weyl semimetal material. Here, we report the results of experiments performed by in situ three-dimensional double-axis rotation to extract the full 4π solid angular dependence of the transport properties. A clear anomalous Hall effect is detected in every sample studied, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Large anomalous Hall signals develop when the magnetic field is rotated in the plane of the stacked quasi-two-dimensional layers, with the values vanishing above about 60 K, where the negative longitudinal magnetoresistance also disappears. This suggests a close relation in their origins, which we attribute to the Berry curvature generated by the Weyl nodes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Resistivity, magnetization and ARPES spectrum of ZrTe5.
Fig. 2: Angular dependence of MR and Hall signals in sample Z2.
Fig. 3: Full 4π solid angular dependence of AHE in sample ZQ3.
Fig. 4: Temperature and angular dependence of transport properties in samples ZQ4 and Z5.

References

  1. 1.

    Murakami, S. & Kuga, S.-i Universal phase diagrams for the quantum spin Hall systems. Phys. Rev. B 78, 165313 (2008).

    ADS  Article  Google Scholar 

  2. 2.

    Okugawa, R. & Murakami, S. Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones. Phys. Rev. B 89, 235315 (2014).

    ADS  Article  Google Scholar 

  3. 3.

    Hosur, P. & Qi, X. Recent developments in transport phenomena in Weyl semimetals. C. R. Phys. 14, 857–870 (2013).

    ADS  Article  Google Scholar 

  4. 4.

    Burkov, A. A. & Kim, Y. B. 2. Phys. Rev. Lett. 117, 136602 (2016).

    ADS  Article  Google Scholar 

  5. 5.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    Yang, K.-Y., Lu, Y.-M. & Ran, Y. Quantum Hall effects in a Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280–284 (2015).

    ADS  Article  Google Scholar 

  9. 9.

    Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    Article  Google Scholar 

  10. 10.

    Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  11. 11.

    Li, Q. et al. Chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550–554 (2016).

    Article  Google Scholar 

  12. 12.

    Adler, S. L. Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969).

    ADS  Article  Google Scholar 

  13. 13.

    Bell, J. S. & Jackiw, R. A PCAC puzzle: π0→γγ in the σ-model. Nuovo Cim. A 60, 47–61 (1969).

    ADS  Article  Google Scholar 

  14. 14.

    Nielsen, H. & Ninomiya, M. A no-go theorem for regularizing chiral fermions. Phys. Lett. B 105, 219–223 (1981).

    ADS  Article  Google Scholar 

  15. 15.

    Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Hirschberger, M. et al. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15, 1161–1165 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Wang, Z. et al. Dirac semimetal and topological phase transitions in A 3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 88, 125427 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Wu, R. et al. Evidence for topological edge states in a large energy gap near the step edges on the surface of ZrTe5. Phys. Rev. X 6, 021017 (2016).

    Google Scholar 

  20. 20.

    Zhang, Y. et al. Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5. Nat. Commun. 8, 15512 EP (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Manzoni, G. et al. Ultrafast optical control of the electronic properties of ZrTe5. Phys. Rev. Lett. 115, 207402 (2015).

    ADS  Article  Google Scholar 

  22. 22.

    Shen, L. et al. Spectroscopic evidence for the gapless electronic structure in bulk ZrTe5. J. Electron Spectrosc. Relat. Phenom. 219, 45–52 (2016).

    Article  Google Scholar 

  23. 23.

    Xiong, H. et al. Three-dimensional nature of the band structure of ZrTe5 measured by high-momentum-resolution photoemission spectroscopy. Phys. Rev. B 95, 195119 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

    ADS  Article  Google Scholar 

  25. 25.

    Weng, H., Dai, X. & Fang, Z. Transition-metal pentatelluride ZrTe5 and HfTe5: a paradigm for large-gap quantum spin Hall insulators. Phys. Rev. X 4, 011002 (2014).

    Google Scholar 

  26. 26.

    Littleton, R. T. et al. Effect of Ti substitution on the thermoelectric properties of the pentatelluride materials M1−xTi x Te5 (M = Hf, Zr). Appl. Phys. Lett. 72, 2056–2058 (1998).

    ADS  Article  Google Scholar 

  27. 27.

    Lowhorn, N. D., Tritt, T. M., Abbott, E. E. & Kolis, J. W. Effect of rare earth doping on the thermoelectric and electrical transport properties of the transition metal pentatelluride HfTe5. In ICT 2005. 24th Int. Conf. on Thermoelectrics, 2005 41–45 (2005).

  28. 28.

    Fuller, W. et al. Pressure effects in HfTe5 and ZrTe5. J. Phys. Colloques 44, 1709–1712 (1983).

    Article  Google Scholar 

  29. 29.

    Burkov, A. A. Giant planar Hall effect in topological metals. Phys. Rev. B 96, 041110 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Nandy, S., Sharma, G., Taraphder, A. & Tewari, S. Chiral anomaly as the origin of the planar Hall effect in Weyl semimetals. Phys. Rev. Lett. 119, 176804 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Behnia, K., Méasson, M.-A. & Kopelevich, Y. Oscillating Nernst–Ettingshausen effect in bismuth across the quantum limit. Phys. Rev. Lett. 98, 166602 (2007).

    ADS  Article  Google Scholar 

  32. 32.

    Zhu, Z., Fauqué, B., Fuseya, Y. & Behnia, K. Angle-resolved Landau spectrum of electrons and holes in bismuth. Phys. Rev. B 84, 115137 (2011).

    ADS  Article  Google Scholar 

  33. 33.

    Zhu, Z. et al. Quantum oscillations, thermoelectric coefficients, and the Fermi surface of semimetallic Wte2. Phys. Rev. Lett. 114, 176601 (2015).

    ADS  Article  Google Scholar 

  34. 34.

    Li, X. et al. Anomalous Nernst and Righi–Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

    ADS  Article  Google Scholar 

  36. 36.

    Murakami, S. Gap closing and universal phase diagrams in topological insulators. Physica E 43, 748–754 (2011).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the US Army Research Office under contract ARO W911NF-16-1-0116. N.P.O. acknowledges the support of the Gordon and Betty Moore Foundation's EPiQS Initiative through grant GBMF4539. The crystal growth was carried out by Q.G., S.K. and R.J.C., with support from the US National Science Foundation (NSF MRSEC grant DMR 1420541). J.A.S., P.S.K. and Z.-X. S. were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC02-76SF00515. T.L., J.A.S. and H.X. acknowledge support by the Gordon and Betty Moore Foundation's EPiQS Initiative through grant GBMF4546. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract DE-AC02-76SF00515.

Author information

Affiliations

Authors

Contributions

T.L. and N.P.O. conceived the idea behind the experiment. T.L. designed the experiment with double-axis rotator and carried out the transport measurements with some assistance from J.L., M.L. and W.W. The crystals were grown and characterized by Q.G., S.K. and R.J.C. The high-momentum-resolution laser-ARPES measurements were made and studied by H.X., J.A.S., P.S.K. and Z.-X.S. Synchrotron ARPES measurements at beamline 5-4 of SSRL were made by T.L. and M.H. Analyses of the measurements were carried out by T.L. and N.P.O. The manuscript was written by T.L. and N.P.O. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Tian Liang or N. P. Ong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplemental Information

Four additional figures with captions

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, T., Lin, J., Gibson, Q. et al. Anomalous Hall effect in ZrTe5. Nature Phys 14, 451–455 (2018). https://doi.org/10.1038/s41567-018-0078-z

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing