Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anomalous Hall effect in ZrTe5

Abstract

Research in topological matter has expanded to include the Dirac and Weyl semimetals1,2,3,4,5,6,7,8,9,10, which feature three-dimensional Dirac states protected by symmetry. Zirconium pentatelluride has been of recent interest as a potential Dirac or Weyl semimetal material. Here, we report the results of experiments performed by in situ three-dimensional double-axis rotation to extract the full 4π solid angular dependence of the transport properties. A clear anomalous Hall effect is detected in every sample studied, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Large anomalous Hall signals develop when the magnetic field is rotated in the plane of the stacked quasi-two-dimensional layers, with the values vanishing above about 60 K, where the negative longitudinal magnetoresistance also disappears. This suggests a close relation in their origins, which we attribute to the Berry curvature generated by the Weyl nodes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Resistivity, magnetization and ARPES spectrum of ZrTe5.
Fig. 2: Angular dependence of MR and Hall signals in sample Z2.
Fig. 3: Full 4π solid angular dependence of AHE in sample ZQ3.
Fig. 4: Temperature and angular dependence of transport properties in samples ZQ4 and Z5.

References

  1. Murakami, S. & Kuga, S.-i Universal phase diagrams for the quantum spin Hall systems. Phys. Rev. B 78, 165313 (2008).

    Article  ADS  Google Scholar 

  2. Okugawa, R. & Murakami, S. Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones. Phys. Rev. B 89, 235315 (2014).

    Article  ADS  Google Scholar 

  3. Hosur, P. & Qi, X. Recent developments in transport phenomena in Weyl semimetals. C. R. Phys. 14, 857–870 (2013).

    Article  ADS  Google Scholar 

  4. Burkov, A. A. & Kim, Y. B. 2. Phys. Rev. Lett. 117, 136602 (2016).

    Article  ADS  Google Scholar 

  5. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  6. Yang, K.-Y., Lu, Y.-M. & Ran, Y. Quantum Hall effects in a Weyl semimetal: possible application in pyrochlore iridates. Phys. Rev. B 84, 075129 (2011).

    Article  ADS  Google Scholar 

  7. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    Article  ADS  Google Scholar 

  8. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280–284 (2015).

    Article  ADS  Google Scholar 

  9. Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    Article  Google Scholar 

  10. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  11. Li, Q. et al. Chiral magnetic effect in ZrTe5. Nat. Phys. 12, 550–554 (2016).

    Article  Google Scholar 

  12. Adler, S. L. Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969).

    Article  ADS  Google Scholar 

  13. Bell, J. S. & Jackiw, R. A PCAC puzzle: π0→γγ in the σ-model. Nuovo Cim. A 60, 47–61 (1969).

    Article  ADS  Google Scholar 

  14. Nielsen, H. & Ninomiya, M. A no-go theorem for regularizing chiral fermions. Phys. Lett. B 105, 219–223 (1981).

    Article  ADS  Google Scholar 

  15. Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Hirschberger, M. et al. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15, 1161–1165 (2016).

    Article  ADS  Google Scholar 

  17. Wang, Z. et al. Dirac semimetal and topological phase transitions in A 3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Article  ADS  Google Scholar 

  18. Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 88, 125427 (2013).

    Article  ADS  Google Scholar 

  19. Wu, R. et al. Evidence for topological edge states in a large energy gap near the step edges on the surface of ZrTe5. Phys. Rev. X 6, 021017 (2016).

    Google Scholar 

  20. Zhang, Y. et al. Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5. Nat. Commun. 8, 15512 EP (2017).

    Article  ADS  Google Scholar 

  21. Manzoni, G. et al. Ultrafast optical control of the electronic properties of ZrTe5. Phys. Rev. Lett. 115, 207402 (2015).

    Article  ADS  Google Scholar 

  22. Shen, L. et al. Spectroscopic evidence for the gapless electronic structure in bulk ZrTe5. J. Electron Spectrosc. Relat. Phenom. 219, 45–52 (2016).

    Article  Google Scholar 

  23. Xiong, H. et al. Three-dimensional nature of the band structure of ZrTe5 measured by high-momentum-resolution photoemission spectroscopy. Phys. Rev. B 95, 195119 (2017).

    Article  ADS  Google Scholar 

  24. Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

    Article  ADS  Google Scholar 

  25. Weng, H., Dai, X. & Fang, Z. Transition-metal pentatelluride ZrTe5 and HfTe5: a paradigm for large-gap quantum spin Hall insulators. Phys. Rev. X 4, 011002 (2014).

    Google Scholar 

  26. Littleton, R. T. et al. Effect of Ti substitution on the thermoelectric properties of the pentatelluride materials M1−xTi x Te5 (M = Hf, Zr). Appl. Phys. Lett. 72, 2056–2058 (1998).

    Article  ADS  Google Scholar 

  27. Lowhorn, N. D., Tritt, T. M., Abbott, E. E. & Kolis, J. W. Effect of rare earth doping on the thermoelectric and electrical transport properties of the transition metal pentatelluride HfTe5. In ICT 2005. 24th Int. Conf. on Thermoelectrics, 2005 41–45 (2005).

  28. Fuller, W. et al. Pressure effects in HfTe5 and ZrTe5. J. Phys. Colloques 44, 1709–1712 (1983).

    Article  Google Scholar 

  29. Burkov, A. A. Giant planar Hall effect in topological metals. Phys. Rev. B 96, 041110 (2017).

    Article  ADS  Google Scholar 

  30. Nandy, S., Sharma, G., Taraphder, A. & Tewari, S. Chiral anomaly as the origin of the planar Hall effect in Weyl semimetals. Phys. Rev. Lett. 119, 176804 (2017).

    Article  ADS  Google Scholar 

  31. Behnia, K., Méasson, M.-A. & Kopelevich, Y. Oscillating Nernst–Ettingshausen effect in bismuth across the quantum limit. Phys. Rev. Lett. 98, 166602 (2007).

    Article  ADS  Google Scholar 

  32. Zhu, Z., Fauqué, B., Fuseya, Y. & Behnia, K. Angle-resolved Landau spectrum of electrons and holes in bismuth. Phys. Rev. B 84, 115137 (2011).

    Article  ADS  Google Scholar 

  33. Zhu, Z. et al. Quantum oscillations, thermoelectric coefficients, and the Fermi surface of semimetallic Wte2. Phys. Rev. Lett. 114, 176601 (2015).

    Article  ADS  Google Scholar 

  34. Li, X. et al. Anomalous Nernst and Righi–Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).

    Article  ADS  Google Scholar 

  35. Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

    Article  ADS  Google Scholar 

  36. Murakami, S. Gap closing and universal phase diagrams in topological insulators. Physica E 43, 748–754 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research was supported by the US Army Research Office under contract ARO W911NF-16-1-0116. N.P.O. acknowledges the support of the Gordon and Betty Moore Foundation's EPiQS Initiative through grant GBMF4539. The crystal growth was carried out by Q.G., S.K. and R.J.C., with support from the US National Science Foundation (NSF MRSEC grant DMR 1420541). J.A.S., P.S.K. and Z.-X. S. were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC02-76SF00515. T.L., J.A.S. and H.X. acknowledge support by the Gordon and Betty Moore Foundation's EPiQS Initiative through grant GBMF4546. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Contributions

T.L. and N.P.O. conceived the idea behind the experiment. T.L. designed the experiment with double-axis rotator and carried out the transport measurements with some assistance from J.L., M.L. and W.W. The crystals were grown and characterized by Q.G., S.K. and R.J.C. The high-momentum-resolution laser-ARPES measurements were made and studied by H.X., J.A.S., P.S.K. and Z.-X.S. Synchrotron ARPES measurements at beamline 5-4 of SSRL were made by T.L. and M.H. Analyses of the measurements were carried out by T.L. and N.P.O. The manuscript was written by T.L. and N.P.O. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Tian Liang or N. P. Ong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplemental Information

Four additional figures with captions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, T., Lin, J., Gibson, Q. et al. Anomalous Hall effect in ZrTe5. Nature Phys 14, 451–455 (2018). https://doi.org/10.1038/s41567-018-0078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0078-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing