Review Article | Published:

Spin transport and spin torque in antiferromagnetic devices

Nature Physicsvolume 14pages220228 (2018) | Download Citation


Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets, which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here, we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum-mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 18 December 2018

    In the version of this Review Article originally published, the affiliations of the authors J. Železný, P. Wadley and K. Olejník were incorrect and should have read: “J. Železný1,2, P. Wadley3, K. Olejník2. 1Max Planck Institute for Chemical Physics of Solids, Dresden, Germany. 2Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic. 3School of Physics and Astronomy, University of Nottingham, Nottingham, UK.” These have now been corrected in the online versions.


  1. 1.

    Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

  2. 2.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

  3. 3.

    Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

  4. 4.

    Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

  5. 5.

    Gomonay, H. V. & Loktev, V. M. Spin transfer and current-induced switching in antiferromagnets. Phys. Rev. B 81, 144427 (2010).

  6. 6.

    Gomonay, H. V., Kunitsyn, R. V. & Loktev, V. M. Symmetry and the macroscopic dynamics of antiferromagnetic materials in the presence of spin-polarized current. Phys. Rev. B 85, 134446 (2012).

  7. 7.

    Cheng, R., Xiao, J., Niu, Q. & Brataas, A. Spin pumping and spin-transfer torques in antiferromagnets. Phys. Rev. Lett. 113, 057601 (2014).

  8. 8

    Gomonay, O., Baltz, V., Brataas, A. & Tserkovnyak, Y. Antiferromagnetic spin textures and dynamics. Nat. Phys. (2018).

  9. 9.

    Nogués, J. et al. Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005).

  10. 10.

    Wei, Z. et al. Changing exchange bias in spin valves with an electric current. Phys. Rev. Lett. 98, 116603 (2007).

  11. 11.

    Urazhdin, S. & Anthony, N. Effect of polarized current on the magnetic state of an antiferromagnet. Phys. Rev. Lett. 99, 046602 (2007).

  12. 12.

    Wei, Z., Basset, J., Sharma, A., Bass, J. & Tsoi, M. Spin-transfer interactions in exchange-biased spin valves. J. Appl. Phys. 105, 07D108 (2009).

  13. 13.

    Tang, X. L., Zhang, H. W., Su, H., Zhong, Z. Y. & Jing, Y. L. Changing and reversing the exchange bias in a current-in-plane spin valve by means of an electric current. Appl. Phys. Lett. 91, 122504 (2007).

  14. 14.

    Dai, N. V. et al. Impact of in-plane currents on magnetoresistance properties of an exchange-biased spin valve with an insulating antiferromagnetic layer. Phys. Rev. B 77, 132406 (2008).

  15. 15.

    Tang, X., Su, H., Zhang, H. W., Jing, Y. L. & Zhong, Z. Y. Tuning the direction of exchange bias in ferromagnetic/antiferromagnetic bilayer by angular-dependent spin-polarized current. J. Appl. Phys. 112, 073916 (2012).

  16. 16.

    Daughton, J. Magnetoresistive memory technology. Thin Solid Films 216, 162–168 (1992).

  17. 17.

    Shick, A. B., Khmelevskyi, S., Mryasov, O. N., Wunderlich, J. & Jungwirth, T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: a route towards antiferromagnetic spintronics. Phys. Rev. B 81, 212409 (2010).

  18. 18.

    Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

  19. 19.

    Fina, I. et al. Anisotropic magnetoresistance in an antiferromagnetic semiconductor. Nat. Commun. 5, 4671 (2014).

  20. 20.

    Zhang, X. & Zou, L. K. Planar Hall effect in Y3Fe5O12/IrMn films. Appl. Phys. Lett. 105, 262401 (2014).

  21. 21.

    Wong, A. T. et al. Strain driven anisotropic magnetoresistance in antiferromagnetic La 0.4Sr0.6MnO3. Appl. Phys. Lett. 105, 052401 (2014).

  22. 22.

    Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016).

  23. 23.

    Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

  24. 24.

    Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014).

  25. 25.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

  26. 26.

    Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

  27. 27.

    Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

  28. 28.

    Ralph, D. Spintronics research at Cornell. UCSB (2013).

  29. 29.

    Wang, Y. Y. et al. Room-temperature perpendicular exchange coupling and tunneling anisotropic magnetoresistance in an antiferromagnet-based tunnel junction. Phys. Rev. Lett. 109, 137201 (2012).

  30. 30.

    Petti, D. et al. Storing magnetic information in IrMn/MgO/Ta tunnel junctions via field-cooling. Appl. Phys. Lett. 102, 192404 (2013).

  31. 31.

    Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

  32. 32.

    Silov, A. Y. et al. Current-induced spin polarization at a single heterojunction. Appl. Phys. Lett. 85, 5929–5931 (2004).

  33. 33.

    Kato, Y., Myers, R., Gossard, A. & Awschalom, D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 176601 (2004).

  34. 34.

    Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

  35. 35.

    Bernevig, B. A. & Vafek, O. Piezo-magnetoelectric effects in p-doped semiconductors. Phys. Rev. B 72, 033203 (2005).

  36. 36.

    Manchon, A. & Zhang, S. Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys. Rev. B 78, 212405 (2008).

  37. 37.

    Garate, I. & MacDonald, A. H. Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets. Phys. Rev. B 80, 134403 (2009).

  38. 38.

    Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat. Phys. 5, 656–659 (2009).

  39. 39.

    Fang, D. et al. Spin-orbit-driven ferromagnetic resonance. Nat. Nanotech. 6, 413–417 (2011).

  40. 40.

    Ciccarelli, C. et al. Room-temperature spin–orbit torque in NiMnSb. Nat. Phys. 12, 855–860 (2016).

  41. 41.

    Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).

  42. 42.

    Železný, J. et al. Spin-orbit torques in locally and globally noncentrosymmetric crystals: antiferromagnets and ferromagnets. Phys. Rev. B 95, 014403 (2017).

  43. 43.

    Saidaoui, H. B. M. & Manchon, A. Spin orbit torque in disordered antiferromagnets. Preprint at (2016).

  44. 44.

    Grzybowski, M. J. et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 118, 057701 (2017).

  45. 45.

    Bodnar, S. Y. et al. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018)

  46. 46.

    Meinert, M., Graulich, D. & Matalla-Wagner, T. Key role of thermal activation in the electrical switching of antiferromagnetic Mn2Au. Preprint at (2017).

  47. 47.

    Moriyama, T. et al. Sequential write-read operations in FeRh antiferromagnetic memory. Appl. Phys. Lett. 107, 122403 (2015).

  48. 48.

    Olejník, K. et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017).

  49. 49.

    Olejník, K. et al. THz electrical writing speed in an antiferromagnetic. Preprint at (2017).

  50. 50.

    Bedau, D. et al. Spin-transfer pulse switching: from the dynamic to the thermally activated regime. Appl. Phys. Lett. 97, 262502 (2010).

  51. 51.

    Garello, K. et al. Ultrafast magnetization switching by spin-orbit torques. Appl. Phys. Lett. 105, 212402 (2014).

  52. 52.

    Gomonay, O., Jungwirth, T. & Sinova, J. High antiferromagnetic domain wall velocity induced by Néel spin-orbit torques. Phys. Rev. Lett. 117, 017202 (2016).

  53. 53.

    Shiino, T. et al. Antiferromagnetic domain wall motion driven by spin-orbit torques. Phys. Rev. Lett. 117, 087203 (2016).

  54. 54.

    Kosub, T. et al. Purely antiferromagnetic magnetoelectric random access memory. Nat. Commun. 8, 13985 (2017).

  55. 55.

    Sando, D., Barthélémy, A. & Bibes, M. BiFeO3 epitaxial thin films and devices: past, present and future. J. Phys. Condens. Matter 26, 473201 (2014).

  56. 56.

    Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

  57. 57.

    Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

  58. 58.

    Prenat, G. et al. Ultra-fast and high-reliability SOT-MRAM: from cache replacement to normally-off computing. IEEE Trans. Multi-Scale Computing Systems 2, 49–60 (2016).

  59. 59.

    Reichlová, H. et al. Current induced torques in structures with ultra-thin IrMn antiferromagnet. Phys. Rev. B 92, 165424 (2015).

  60. 60.

    Moriyama, T., Oda, K. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Preprint at (2017).

  61. 61.

    Zhang, W. et al. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014).

  62. 62.

    Mendes, J. B. S. et al. Large inverse spin Hall effect in the antiferromagnetic metal Ir20Mn80. Phys. Rev. B 89, 140406 (2014).

  63. 63.

    Qu, D., Huang, S. Y. & Chien, C. L. Inverse spin Hall effect in Cr: independence of antiferromagnetic ordering. Phys. Rev. B 92, 020418 (2015).

  64. 64.

    Zhang, W. et al. All-electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects. Phys. Rev. B 92, 144405 (2015).

  65. 65.

    Zhang, W. et al. Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci. Adv. 2, e1600759 (2016).

  66. 66.

    Tshitoyan, V. et al. Electrical manipulation of ferromagnetic NiFe by antiferromagnetic IrMn. Phys. Rev. B 92, 214406 (2015).

  67. 67.

    Fukami, S., Zhang, C., Duttagupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–542 (2016).

  68. 68.

    Oh, Y.-W. et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotech. 11, 878–884 (2016).

  69. 69.

    van den Brink, A. et al. Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. 7, 10854 (2016).

  70. 70.

    Wu, D. et al. Spin-orbit torques in perpendicularly magnetized Ir22Mn78/Co20Fe60B20/MgO multilayer. Appl. Phys. Lett. 109, 222401 (2016).

  71. 71.

    Ou, Y., Shi, S., Ralph, D. C. & Buhrman, R. A. Strong spin Hall effect in the antiferromagnet PtMn. Phys. Rev. B 93, 220405 (2016).

  72. 72.

    Kurenkov, A., Zhang, C., DuttaGupta, S., Fukami, S. & Ohno, H. Device-size dependence of field-free spin-orbit torque induced magnetization switching in antiferromagnet/ferromagnet structures. Appl. Phys. Lett. 110, 092410 (2017).

  73. 73.

    Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

  74. 74.

    Borders, W. A. et al. Analogue spin–orbit torque device for artificial-neural-network-based associative memory operation. Appl. Phys. Express 10, 013007 (2017).

  75. 75.

    Saidl, V. et al. Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet. Nat. Photon. 11, 91–96 (2017).

  76. 76

    Němec, P., Fiebig, M., Kampfrath, T. & Kimel, A. V. Antiferromagnetic opto-spintronics. Nat. Phys. (2018).

  77. 77.

    Baibich, M. N. et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

  78. 78.

    Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

  79. 79.

    Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).

  80. 80.

    Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

  81. 81.

    Slonczewski, J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989).

  82. 82.

    Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

  83. 83.

    Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

  84. 84.

    Núñez, A. S., Duine, R. A., Haney, P. M. & MacDonald, A. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

  85. 85.

    Haney, P. M. et al. Ab initio giant magnetoresistance and current-induced torques in Cr/Au/Cr multilayers. Phys. Rev. B 75, 174428 (2007).

  86. 86.

    Xu, Y., Wang, S. & Xia, K. Spin-transfer torques in antiferromagnetic metals from first principles. Phys. Rev. Lett. 100, 226602 (2008).

  87. 87.

    Prakhya, K., Popescu, A. & Haney, P. M. Current-induced torques between ferromagnets and compensated antiferromagnets: symmetry and phase coherence effects. Phys. Rev. B 89, 054421 (2014).

  88. 88.

    Merodio, P., Kalitsov, A., Béa, H., Baltz, V. & Chshiev, M. Spin-dependent transport in antiferromagnetic tunnel junctions. Appl. Phys. Lett. 105, 122403 (2014).

  89. 89.

    Stamenova, M., Mohebbi, R., Seyed-Yazdi, J., Rungger, I. & Sanvito, S. First-principles spin-transfer torque in CuMnAs|GaP|CuMnAs junctions. Phys. Rev. B 95, 060403 (2017).

  90. 90.

    MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).

  91. 91.

    Haney, P. M., Duine, R. A., Núñez, A. S. & MacDonald, A. H. Current-induced torques in magnetic metals: beyond spin-transfer. J. Magn. Magn. Mater. 320, 1300–1311 (2008).

  92. 92.

    Haney, P. M. & MacDonald, A. H. Current-induced torques due to compensated antiferromagnets. Phys. Rev. Lett. 100, 196801 (2008).

  93. 93.

    Hals, K. M. D., Tserkovnyak, Y. & Brataas, A. Phenomenology of current-induced dynamics in antiferromagnets. Phys. Rev. Lett. 106, 107206 (2011).

  94. 94.

    Yamane, Y., Ieda, J. & Sinova, J. Spin-transfer torques in antiferromagnetic textures: efficiency and quantification method. Phys. Rev. B 94, 054409 (2016).

  95. 95.

    Duine, R. A., Haney, P. M., Núñez, A. S. & MacDonald, A. Inelastic scattering in ferromagnetic and antiferromagnetic spin valves. Phys. Rev. B 75, 014433 (2007).

  96. 96.

    Saidaoui, H. B. M., Manchon, A. & Waintal, X. Spin transfer torque in antiferromagnetic spin valves: from clean to disordered regimes. Phys. Rev. B 89, 174430 (2014).

  97. 97.

    Manchon, A. Spin diffusion and torques in disordered antiferromagnets. J. Phys. Condens. Matter 29, 104002 (2017).

  98. 98.

    Saidaoui, H., Manchon, A. & Waintal, X. Robust spin transfer torque in antiferromagnetic tunnel junctions. Phys. Rev. B 95, 134424 (2017).

  99. 99.

    Wang, L., Wang, S. G., Rizwan, S., Qin, Q. H. & Han, X. F. Magnetoresistance effect in antiferromagnet/nonmagnet/antiferromagnet multilayers. Appl. Phys. Lett. 95, 152512 (2009).

  100. 100.

    Wei, Z., Sharma, A., Bass, J. & Tsoi, M. Point-contact search for antiferromagnetic giant magnetoresistance. J. Appl. Phys. 105, 07D113 (2009).

  101. 101.

    Wang, Y. et al. Anti-ferromagnet controlled tunneling magnetoresistance. Adv. Funct. Mater. 24, 6806–6810 (2014).

  102. 102.

    Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in non-collinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

Download references


We acknowledge support from EU FET Open RIA grant no. 766566. The contributions from A.H. preparing this manuscript were supported by the Department of Energy, Office of Science, Materials Science and Engineering Division. J.Ž. acknowledges support from the Institute of Physics of the Czech Academy of Sciences and the Max Planck Society through the Max Planck Partner Group programme. P.W. acknowledges support from Engineering and Physical Sciences Research Council grant EP/P019749/1 and from the Royal Society through a University Research Fellowship.

Author information

Author notes

  1. These authors contributed equally: J. Železný and P. Wadley


  1. Max Planck Institute for Chemical Physics of Solids, Dresden, Germany

    • J. Železný
  2. Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

    • J. Železný
    •  & K. Olejník
  3. School of Physics and Astronomy, University of Nottingham, Nottingham, UK

    • P. Wadley
  4. Materials Science Division, Argonne National Laboratory, Argonne, IL, USA

    • A. Hoffmann
  5. Center for Spintronics Integrated Systems, Tohoku University, Sendai, Japan

    • H. Ohno
  6. Center for Innovative Integrated Electronic Systems, Tohoku University, Sendai, Japan

    • H. Ohno
  7. Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan

    • H. Ohno
  8. WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan

    • H. Ohno


  1. Search for J. Železný in:

  2. Search for P. Wadley in:

  3. Search for K. Olejník in:

  4. Search for A. Hoffmann in:

  5. Search for H. Ohno in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to J. Železný.

About this article

Publication history




Issue Date


Further reading