Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction

Abstract

Antiferromagnetic spintronics1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 is a rapidly growing field in condensed-matter physics and information technology with potential applications for high-density and ultrafast information devices. However, the practical application of these devices has been largely limited by small electrical outputs at room temperature. Here we describe a room-temperature exchange-bias effect between a collinear antiferromagnet, MnPt, and a non-collinear antiferromagnet, Mn3Pt, which together are similar to a ferromagnet–antiferromagnet exchange-bias system. We use this exotic effect to build all-antiferromagnetic tunnel junctions with large nonvolatile room-temperature magnetoresistance values that reach a maximum of about 100%. Atomistic spin dynamics simulations reveal that uncompensated localized spins at the interface of MnPt produce the exchange bias. First-principles calculations indicate that the remarkable tunnelling magnetoresistance originates from the spin polarization of Mn3Pt in the momentum space. All-antiferromagnetic tunnel junction devices, with nearly vanishing stray fields and strongly enhanced spin dynamics up to the terahertz level, could be important for next-generation highly integrated and ultrafast memory devices7,9,16.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of an AATJ.
Fig. 2: Exchange coupling between a collinear antiferromagnet and a non-collinear antiferromagnet.
Fig. 3: AATJ devices operated at room temperature.
Fig. 4: Theoretical calculations of the TMR for AATJs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

All of the simulation codes in this paper are available from the corresponding authors upon reasonable request.

References

  1. Núñez, A. S., Duine, R. A., Haney, P. & MacDonald, A. H. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

    Article  ADS  Google Scholar 

  2. Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

    Article  ADS  CAS  Google Scholar 

  3. MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).

    Article  ADS  CAS  Google Scholar 

  4. Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

    Article  ADS  CAS  Google Scholar 

  5. Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article  ADS  Google Scholar 

  6. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article  ADS  CAS  Google Scholar 

  7. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  ADS  CAS  Google Scholar 

  8. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  ADS  CAS  Google Scholar 

  9. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  ADS  CAS  Google Scholar 

  10. Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    Article  ADS  Google Scholar 

  11. Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. https://doi.org/10.1038/s41928-022-00866-z (2022).

    Article  Google Scholar 

  12. Olejník, K. et al. Terahertz electrical writing speed in an antiferromagnetic memory. Sci. Adv. 4, eaar3566 (2018).

    Article  ADS  Google Scholar 

  13. Liu, Z. et al. Antiferromagnetic piezospintronics. Adv. Electron. Mater. 5, 1900176 (2019).

    Article  Google Scholar 

  14. Bodnar, S. et al. Magnetoresistance effects in the metallic antiferromagnet Mn2Au. Phys. Rev. Appl. 14, 014004 (2020).

    Article  ADS  CAS  Google Scholar 

  15. Yan, H. et al. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat. Nanotechnol. 14, 131–136 (2019).

    Article  ADS  CAS  Google Scholar 

  16. Yan, H. et al. Electric-field-controlled antiferromagnetic spintronic devices. Adv. Mater. 32, 1905603 (2020).

    Article  CAS  Google Scholar 

  17. Kiyohara, N., Tomita, T. & Nakatsuji, S. Giant anomalous Hall effect in the chiral antiferromagnet Mn3Ge. Phys. Rev. Appl. 5, 064009 (2016).

    Article  ADS  Google Scholar 

  18. Liu, Z. et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1, 172–177 (2018).

    Article  CAS  Google Scholar 

  19. Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).

    Article  ADS  Google Scholar 

  20. Yan, H., Qin, P. & Liu, Z. External-field control of collinear and noncollinear antiferromagnetic spins. Mat. China 40, 881–893 (2021).

    Google Scholar 

  21. Liu, Z. et al. Epitaxial growth of intermetallic MnPt films on oxides and large exchange bias. Adv. Mater. 28, 118–123 (2016).

    Article  ADS  CAS  Google Scholar 

  22. Guo, H. et al. Giant piezospintronic effect in a noncollinear antiferromagnetic metal. Adv. Mater. 32, 2002300 (2020).

    Article  CAS  Google Scholar 

  23. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, L231–L234 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Zhang, S., Levy, P. M., Marley, A. C. & Parkin, S. S. P. Quenching of magnetoresistance by hot electrons in magnetic tunnel junctions. Phys. Rev. Lett. 79, 3744–3747 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Moodera, J. S., Nowak, J. & Veerdonk, R. Interface magnetism and spin wave scattering in ferromagnet-insulator-ferromagnet tunnel junctions. Phys. Rev. Lett. 80, 2941–2944 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Han, X., Oogane, M., Kubota, H., Ando, Y. & Miyazaki, T. Fabrication of high-magnetoresistance tunnel junctions using Co75Fe25 ferromagnetic electrodes. Appl. Phys. Lett. 77, 283 (2000).

    Article  ADS  CAS  Google Scholar 

  28. Ikeda, S. et al. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008).

    Article  ADS  Google Scholar 

  29. Xu, P. X. et al. Influence of roughness and disorder on tunneling magnetoresistance. Phys. Rev. B 73, 180402(R) (2006).

    Article  ADS  Google Scholar 

  30. Maria, J. et al. Role of metal-oxide interface in determining the spin polarization of magnetic tunnel junctions. Science 286, 507–509 (1999).

    Article  Google Scholar 

  31. Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    Article  ADS  Google Scholar 

  32. Qin, P.-X. et al. Noncollinear spintronics and electric-field control: a review. Rare Met. 39, 95–112 (2020).

    Article  CAS  Google Scholar 

  33. Chen, H. et al. Noncollinear antiferromagnetic spintronics. Mater. Lab 1, 220032 (2022).

    Google Scholar 

  34. Yuan, L., Wang, Z., Luo, J. & Zunger, A. Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin-orbit coupling. Phys. Rev. Mater. 5, 014409 (2021).

    Article  CAS  Google Scholar 

  35. Krén, E., Kádár, G., Pál, L. & Szabó, P. Investigation of the first-order magnetic transformation in Mn3Pt. J. Appl. Phys. 38, 1265–1266 (1967).

    Article  ADS  Google Scholar 

  36. Tsymbal, E. Y., Mryasov, O. N. & LeClair, P. R. Spin-dependent tunneling in magnetic tunnel junctions. J. Phys. Condens. Matter 15, R109–R142 (2003).

    Article  ADS  CAS  Google Scholar 

  37. Butler, W. H., Zhang, X.-G., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B 63, 054416 (2001).

    Article  ADS  Google Scholar 

  38. Parkin, S. S. P. et al. Giant tunneling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).

    Article  ADS  CAS  Google Scholar 

  39. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

    Article  ADS  CAS  Google Scholar 

  40. Dong, J. T. et al. Tunneling magnetoresistance in noncollinear antiferromagnetic tunnel junctions. Phys. Rev. Lett. 128, 197201 (2022).

    Article  ADS  CAS  Google Scholar 

  41. Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  CAS  Google Scholar 

  42. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  Google Scholar 

  43. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895(R) (1990).

    Article  ADS  CAS  Google Scholar 

  44. Garrity, K. F., Bennett, J. W., Rabe, K. M. & Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452 (2014).

    Article  CAS  Google Scholar 

  45. Choi, H. J. & Ihm, J. Ab initio pseudopotential method for the calculation of conductance in quantum wires. Phys. Rev. B 59, 2267–2275 (1999).

    Article  ADS  Google Scholar 

  46. Smogunov, A., Corso, A. D. & Tosatti, E. Ballistic conductance of magnetic Co and Ni nanowires with ultrasoft pseudopotentials. Phys. Rev. B 70, 045417 (2004).

    Article  ADS  Google Scholar 

  47. Jenkins, S. et al. Atomistic origin of exchange anisotropy in noncollinear γ-IrMn3-CoFe bilayers. Phys. Rev. B 102, 140404(R) (2020).

    Article  ADS  Google Scholar 

  48. Evans, R. et al. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26, 103202 (2014).

    Article  ADS  CAS  Google Scholar 

  49. Jenkins, S., Chantrell, R. & Evans, R. Exchange bias in multigranular noncollinear IrMn3/CoFe thin films. Phys. Rev. B 103, 014424 (2021).

    Article  ADS  CAS  Google Scholar 

  50. Kokalj, A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 17, 176–179 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Z.L. and C.J. acknowledge financial support from the National Natural Science Foundation of China (grant number 52121001). Z.L. acknowledges financial support from the National Natural Science Foundation of China (grant number 52271235). J.Z. acknowledges financial support from the National Natural Science Foundation of China (grant number 12174129). Z.Z. acknowledges financial support from the National Natural Science Foundation of China (grant number 11974379) and the cooperation project of Vacuum Interconnect Nano X Research Facility (Nano-X) of Chinese Academy of Sciences, Suzhou Institute of Nano-Tech and Nano-Bionics (D21008).

Author information

Authors and Affiliations

Authors

Contributions

P.Q., H.Y., X.W., H.C., Z.M., Z.F., X.Z., L.L. and T.Z. performed the sample preparation and structural, magnetic and electrical measurements. J.D., M.Z. and J.Z. performed theoretical calculations. J.C. and Z.Z. fabricated the nanoscale devices. This project was conceived, led, coordinated and guided by Z.L. and C.J. The manuscript was written by Z.L.

Corresponding authors

Correspondence to Zhongming Zeng, Jia Zhang, Chengbao Jiang or Zhiqi Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Exchange bias at various temperatures and different thicknesses of MnPt for a Mn3Pt/MnPt/MAO bilayer heterostructure.

a, Normalized anomalous Hall resistivity of Mn3Pt(5 nm)/MnPt(t nm)/MAO bilayer heterostructures measured at room temperature. b, Coercivity and exchange bias fields extracted from a. c, Normalized anomalous Hall resistivity of the Mn3Pt(5 nm)/MnPt(10 nm)/MAO heterostructure from 10 to 300 K. d, Coercivity and exchange bias fields extracted from c.

Extended Data Fig. 2 Simulated Néel temperatures for Mn3Pt and MnPt thin films.

a, Simulated Néel temperatures for different values of effective FM exchange interaction J2 for Mn3Pt with the first nearest neighbour interaction J1 = −4.192 × 10−21 J. b, Simulated Néel temperature for MnPt with J1 = −6.4 × 10−21 J and J2 = 4.38 × 10−21 J.

Extended Data Fig. 3 Simulated out-of-plane magnetic hysteresis loops of Mn3Pt thin film using various values of kN (Néel pair anisotropy constant between the nearest Mn-Pt pairs) and film thicknesses.

a, Hysteresis loops of a Mn3Pt thin film of 1.73 nm thickness with various values of kN. b, Hysteresis loops of Mn3Pt film using a fixed kN = 1 × 10−25 J with different film thicknesses. c, Schematics of spin configurations under different magnetic fields. The equilibration state represents the ground state. d, Spin and crystal structures of non-collinear Mn3Pt under different states.

Extended Data Fig. 4 Exchange bias simulation for a MnPt/Mn3Pt bilayer system.

a, Interfacial spin model for simulating the exchange bias. b, Simulated exchange bias between collinear MnPt and non-collinear Mn3Pt for different interfacial exchange interaction Jint values. c, Simulated exchange bias between collinear MnPt and non-collinear Mn3Pt with Jint = 6.67 × 10−23 J.

Extended Data Fig. 5 Simulation of the increased coercivity for the exchange-biased Mn3Pt/MnPt bilayer system.

a, Interface spin model for exchange bias simulation by considering reversible and irreversible uncompensated interfacial spins. b, Simulated exchange bias between collinear MnPt and non-collinear Mn3Pt.

Extended Data Fig. 6 Temperature-dependent magnetization and resistance area product.

a, Normalized out-of-plane magnetization for the two Mn3Pt layers in a Mn3Pt/MgO/Mn3Pt/MnPt/MAO multilayer heterostructure without nano-fabrication at different temperatures. b, Temperature-dependent resistance area product for the parallel (P) and antiparallel (AP) states of an AATJ device.

Extended Data Fig. 7 Bias voltage dependence of TMR.

Bias dependence of TMR for an AATJ device measured at 300 and 10 K with bias voltages ranging over ±200 mV.

Extended Data Fig. 8 Theoretical simulation for the band structures and Fermi surfaces of Mn3Pt under different spin configurations.

a, Atomic and simulated spin configurations of Mn3Pt under positive and negative saturation magnetic fields. b, Corresponding band structures and spin expectation values <σx>, <σy> and <σz> for Mn3Pt. The colour scale for the spin values is shown on the right. c, Three typical Fermi surfaces and spin expectation values with spin configurations of bulk Mn3Pt under positive saturation magnetic field. The colour scale indicates the magnitude of spin. All the first-principles calculations were conducted in the absence of magnetic field, and only the spin configurations under positive and negative saturation magnetic fields were considered.

Extended Data Fig. 9 Theoretical calculations of Bloch states and Fermi surface for Mn3Pt.

a, The number of available Bloch states (conduction channels) in the 2D Brillouin zone of Mn3Pt. The colour bar alongside scales the available Bloch states. b, Top view of the 3D Fermi surface of Mn3Pt along the [001] direction visualized using the Xcrysden package50.

Extended Data Fig. 10 Theoretical calculations of TMR in AATJs with different barrier layers.

a, Atomic structures of Mn3Pt/MgO/Mn3Pt and Mn3Pt/SrTiO3/Mn3Pt antiferromagnetic tunnel junctions for the P and AP alignments of the Néel vectors between the left and right Mn3Pt electrodes. b, Electron transmission T(k||) of Mn3Pt/MgO/Mn3Pt and Mn3Pt/SrTiO3/Mn3Pt tunnel junctions in the 2D Brillouin zone for P and AP alignments of the Néel vectors. c, Transmission ratio of the P alignment over the AP alignment in the Brillouin zone.

Supplementary information

Supplementary Video 1

The simulated hysteresis loop of a Mn3Pt/MnPt bilayer heterostructure shows a remarkable exchange bias effect induced by the irreversible interfacial Mn spins (pink), whereas the increased coercivity can be ascribed to the reversible interfacial Mn spins (green).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, P., Yan, H., Wang, X. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023). https://doi.org/10.1038/s41586-022-05461-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05461-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing