Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cellular packing, mechanical stress and the evolution of multicellularity

Abstract

The evolution of multicellularity set the stage for sustained increases in organismal complexity1,2,3,4,5. However, a fundamental aspect of this transition remains largely unknown: how do simple clusters of cells evolve increased size when confronted by forces capable of breaking intracellular bonds? Here we show that multicellular snowflake yeast clusters6,7,8 fracture due to crowding-induced mechanical stress. Over seven weeks (~291 generations) of daily selection for large size, snowflake clusters evolve to increase their radius 1.7-fold by reducing the accumulation of internal stress. During this period, cells within the clusters evolve to be more elongated, concomitant with a decrease in the cellular volume fraction of the clusters. The associated increase in free space reduces the internal stress caused by cellular growth, thus delaying fracture and increasing cluster size. This work demonstrates how readily natural selection finds simple, physical solutions to spatial constraints that limit the evolution of group size—a fundamental step in the evolution of multicellularity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Snowflake yeast evolve larger size.
Fig. 2: Snowflake yeast fracture due to growth-induced mechanical stress.
Fig. 3: Snowflake yeast evolve to mitigate mechanical stresses by increasing volume fraction.

References

  1. Szathmary, E. & Smith, J. M. The major evolutionary transitions. Nature 374, 227–232 (1995).

    Article  ADS  Google Scholar 

  2. Kirk, D. L. A twelve-step program for evolving multicellularity and a division of labor. Bioessays 27, 299–310 (2005).

    Article  Google Scholar 

  3. Willensdorfer, M. Organism size promotes the evolution of specialized cells in multicellular digital organisms. J. Evol. Biol. 21, 104–110 (2008).

    Article  Google Scholar 

  4. Bonner, J. T. The origins of multicellularity. Integr. Biol. 1, 27–36 (1998).

    Article  Google Scholar 

  5. Fairclough, S. R., Dayel, M. J. & King, N. Multicellular development in a choanoflagellate. Curr. Biol. 20, R875–R876 (2010).

    Article  Google Scholar 

  6. Ratcliff, W. C., Denison, R. F., Borrello, M. & Travisano, M. Experimental evolution of multicellularity. Proc. Natl Acad. Sci. USA 109, 1595–1600 (2012).

    Article  ADS  Google Scholar 

  7. Ratcliff, W. C., Fankhauser, J. D., Rogers, D. W., Greig, D. & Travisano, M. Origins of multicellular evolvability in snowflake yeast. Nat. Commun. 6, 6102 (2015).

    Article  ADS  Google Scholar 

  8. Ratcliff, W. C., Pentz, J. T. & Travisano, M. Tempo and mode of multicellular adaptation in experimentally evolved Saccharomyces cerevisiae. Evolution 67, 1573–1581 (2013).

    Article  Google Scholar 

  9. Grosberg, R. K. & Strathmann, R. R. The evolution of multicellularity: A minor major transition? Annu. Rev. Ecol. Evol. Syst. 38, 621–654 (2007).

    Article  Google Scholar 

  10. Herron, M. D., Hackett, J. D., Aylward, F. O. & Michod, R. E. Triassic origin and early radiation of multicellular volvocine algae. Proc. Natl Acad. Sci. USA 106, 3254–3258 (2009).

    Article  ADS  Google Scholar 

  11. Koschwanez, J. H., Foster, K. R. & Murray, A. W. Improved use of a public good selects for the evolution of undifferentiated multicellularity. eLife 2, e00367 (2013).

    Article  Google Scholar 

  12. Hanschen, E. R. et al. The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity. Nat. Commun. 7, 11370 (2016).

    Article  ADS  Google Scholar 

  13. Kirkegaard, J. B., Bouillant, A., Marron, A. O., Leptos, K. C. & Goldstein, R. E. Aerotaxis in the closest relatives of animals. eLife 5, e18109 (2016).

  14. Anderson, D. P. et al. Evolution of an ancient protein function involved in organized multicellularity in animals. eLife 5, e10147 (2016).

    Google Scholar 

  15. Withers, P. Ja. B. & Bhadeshia, H. K. D. H. Residual stress part 1 – measurement techniques. Mater. Sci. Technol. 17, 355–365 (2001).

    Article  Google Scholar 

  16. Ahmad, M. R., Nakajima, M., Kojima, S., Homma, M. & Fukuda, T. The effects of cell sizes, environmental conditions, and growth phases on the strength of individual W303 yeast cells inside ESEM. IEEE Trans. Nanobiosci. 7, 185–193 (2008).

    Article  Google Scholar 

  17. Delarue, M. et al. Self-driven Jjamming in growing microbial populations. Nat. Phys. 12, 762–766 (2016).

    Article  Google Scholar 

  18. O’Hern, C. S., Silbert, L. E., Liu, A. J. & Nagel, S. R. Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68, 011306 (2003).

    Article  Google Scholar 

  19. Libby, E., Ratcliff, W., Travisano, M. & Kerr, B. Geometry shapes evolution of early multicellularity. PLoS Comput. Biol. 10, e1003803 (2014).

    Article  ADS  Google Scholar 

  20. Sheu, Y. J., Barral, Y. & Snyder, M. Polarized growth controls cell shape and bipolar bud site selection in Saccharomyces cerevisiae. Mol. Cell. Biol. 20, 5235–5247 (2000).

    Article  Google Scholar 

  21. Donev, A. et al. Improving the density of jammed disordered packings using ellipsoids. Science 303, 990–993 (2004).

    Article  ADS  Google Scholar 

  22. Smith, W. P. et al. Cell morphology drives spatial patterning in microbial communities. Proc. Natl Acad. Sci. USA 114, E280–E286 (2017).

    Article  Google Scholar 

  23. Lenski, R. E. & Travisano, M. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc. Natl Acad. Sci. USA 91, 6808–6814 (1994).

    Article  ADS  Google Scholar 

  24. Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an asexual population. Genetica 102103, 127–144 (1998).

    Article  Google Scholar 

  25. Kessin, R. H., Gundersen, G. G., Zaydfudim, V. & Grimson, M. How cellular slime molds evade nematodes. Proc. Natl Acad. Sci. USA 93, 4857–4861 (1996).

    Article  ADS  Google Scholar 

  26. Boraas, M. E., Seale, D. B. & Boxhorn, J. E. Phagotrophy by a flagellate selects for colonial prey: A possible origin of multicellularity. Evol. Ecol. 12, 153–164 (1998).

    Article  Google Scholar 

  27. Smukalla, S. et al. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135, 726–737 (2008).

    Article  Google Scholar 

  28. Pfeiffer, T. & Bonhoeffer, S. An evolutionary scenario for the transition to undifferentiated multicellularity. Proc. Natl Acad. Sci. USA 100, 1095–1098 (2003).

    Article  ADS  Google Scholar 

  29. Ornes, S. Core concept: how nonequilibrium thermodynamics speaks to the mystery of life. Proc. Natl Acad. Sci. USA 114, 423–424 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  30. Buchanan, M. Simple yet successful. Nat. Phys. 13, 720 (2017).

    Article  Google Scholar 

  31. Transtrum, M. K. et al. Perspective: sloppiness and emergent theories in physics, biology, and beyond. J. Chem. Phys. 143, 010901 (2015).

    Article  ADS  Google Scholar 

  32. Mattingly, H. H., Transtrum, M. K., Abbott, M. C. & Machta, B. B. Rational ignorance: simpler models learn more information from finite data. Preprint at https://arxiv.org/abs/1705.01166 (2017).

Download references

Acknowledgements

This work was supported by NASA Exobiology grant no. NNX15AR33G to W.C.R., NSF grant no. IOS-1656549 to W.C.R. and P.J.Y., and a Packard Foundation Fellowship for W.C.R. We would like to thank J. Weitz and D. Yanni for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

S.J., W.C.R. and P.J.Y. planned this research. S.J., J.T.P. and C.G.B. performed all experiments. S.J. and C.G.B. analysed the AFM and microscopy data. E.C.G. wrote the geometric simulation; E.C.G., S.J. and P.J.Y. analysed the simulation data. S.J. and P.J.Y. wrote the first draft of the paper; all authors contributed to revision.

Corresponding authors

Correspondence to William C. Ratcliff or Peter J. Yunker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary information

Supplementary Figures 1–11, Supplementary Notes and Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobeen, S., Pentz, J.T., Graba, E.C. et al. Cellular packing, mechanical stress and the evolution of multicellularity. Nature Phys 14, 286–290 (2018). https://doi.org/10.1038/s41567-017-0002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-017-0002-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing