Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High gradient terahertz-driven ultrafast photogun

Abstract

Terahertz (THz)-based electron acceleration has potential as a technology for next-generation cost-efficient compact electron sources. Although proof-of-principle demonstrations have proved the feasibility of many THz-driven accelerator components, THz-driven photoguns with sufficient brightness, energy and control for use in demanding ultrafast applications have yet to be achieved. Here we present a novel millimetre-scale multicell waveguide-based THz-driven photogun that exploits field enhancement to boost the electron energy, a movable cathode to achieve precise control over the accelerating phase as well as multiple cells for exquisite beam control. The short driving wavelength enables a peak acceleration gradient as high as ~3 GV m−1. Using microjoule-level single-cycle THz pulses, we demonstrate electron beams with up to ~14 keV electron energy, 1% energy spread and ~0.015 mm mrad transverse emittance. With a highly integrated rebunching cell, the bunch is further compressed by about ten times to 167 fs with ~10 fC charge. High-quality diffraction patterns of single-crystal silicon and projection microscopy images of the copper mesh are achieved. We are able to reveal the transient radial electric field developed from the charged particles on a copper mesh after photoexcitation with high spatio-temporal resolution, providing a potential scheme for plasma-based beam manipulation. Overall, these results represent a new record in energy, field gradient, beam quality and control for a THz-driven electron gun, enabling real applications in electron projection microscopy and diffraction. This is therefore a critical step and milestone in the development of all-optical THz-driven electron devices, validating the maturity of the technology and its use in precision applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup.
Fig. 2: Electron emission map measurement.
Fig. 3: Measured electron energy spectra.
Fig. 4: High-gradient acceleration.
Fig. 5: Integrated multicell device.
Fig. 6: Microscopy and diffraction.

Similar content being viewed by others

Data availability

The data that support the plots within this paper are available via figshare at https://doi.org/10.6084/m9.figshare.25391488 (ref. 50). All other data used in this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The code used in this paper is available from the corresponding author upon reasonable request.

References

  1. Ischenko, A. A., Weber, P. M. & Miller, R. J. D. Capturing chemistry in action with electrons: realization of atomically resolved reaction dynamics. Chem. Rev. 117, 11066–11124 (2017).

    Article  Google Scholar 

  2. Gulde, M. et al. Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics. Science 345, 200–204 (2014).

    Article  ADS  Google Scholar 

  3. Filippetto, D. et al. Ultrafast electron diffraction: visualizing dynamic states of matter. Rev. Mod. Phys. 94, 045004 (2022).

    Article  ADS  Google Scholar 

  4. Zewail, A. H. 4D ultrafast electron diffraction, crystallography, and microscopy. Annu. Rev. Phys. Chem. 57, 65–103 (2006).

    Article  ADS  Google Scholar 

  5. Vogelsang, J., Hergert, G., Wang, D., Gross, P. & Lienau, C. Observing charge separation in nanoantennas via ultrafast point-projection electron microscopy. Light: Sci. Appl. https://doi.org/10.1038/s41377-018-0054-5 (2018).

  6. Bressler, C. & Chergui, M. Ultrafast X-ray absorption spectroscopy. Chem. Rev. 104, 1781–1812 (2004).

    Article  Google Scholar 

  7. Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009).

    Article  ADS  Google Scholar 

  8. Malka, V. et al. Principles and applications of compact laser–plasma accelerators. Nat. Phys. 4, 447–453 (2008).

    Article  Google Scholar 

  9. Wang, W. et al. Free-electron lasing at 27 nanometres based on a laser Wakefield accelerator. Nature 595, 516–520 (2021).

    Article  ADS  Google Scholar 

  10. Shiloh, R. et al. Electron phase-space control in photonic chip-based particle acceleration. Nature 597, 498–502 (2021).

    Article  ADS  Google Scholar 

  11. Sapra, N. V. et al. On-chip integrated laser-driven particle accelerator. Science 367, 79–83 (2020).

    Article  ADS  Google Scholar 

  12. Zhang, D. et al. Segmented terahertz electron accelerator and manipulator (STEAM). Nat. Photonics 12, 336–342 (2018).

    Article  ADS  Google Scholar 

  13. Zhang, D. et al. Cascaded multicycle terahertz-driven ultrafast electron acceleration and manipulation. Phys. Rev. 10, 011067 (2020).

    Article  Google Scholar 

  14. Zhang, D. et al. Femtosecond phase control in high-field terahertz-driven ultrafast electron sources. Optica 6, 872–877 (2019).

    Article  ADS  Google Scholar 

  15. Tang, H. et al. Stable and scalable multistage terahertz-driven particle accelerator. Phys. Rev. Lett. 127, 074801 (2021).

    Article  ADS  Google Scholar 

  16. Hibberd, M. T. et al. Acceleration of relativistic beams using laser-generated terahertz pulses. Nat. Photonics 14, 755–759 (2020).

    Article  ADS  Google Scholar 

  17. Curry, E., Fabbri, S., Maxson, J., Musumeci, P. & Gover, A. Meter-scale terahertz-driven acceleration of a relativistic beam. Phys. Rev. Lett. 120, 094801 (2018).

    Article  ADS  Google Scholar 

  18. Kroh, T. et al. Compact terahertz-powered electron photo-gun. In Proc. 12th International Particle Accelerator Conference 2983–2985 (JACoW, 2021); https://doi.org/10.18429/JACoW-IPAC2021-WEPAB158

  19. Zhang, D. et al. Long range terahertz driven electron acceleration using phase shifters. Appl. Phys. Rev. 9, 031407 (2022).

    Article  ADS  Google Scholar 

  20. Hebling, J., Almasi, G., Kozma, I. & Kuhl, J. Velocity matching by pulse front tilting for large area THz-pulse generation. Opt. Express 10, 1161–1166 (2002).

    Article  ADS  Google Scholar 

  21. Fülöp, J. A. et al. Efficient generation of THz pulses with 0.4 mJ energy. Opt. Express 22, 20155–20163 (2014).

    Article  ADS  Google Scholar 

  22. Vicario, C., Monoszlai, B. & Hauri, C. P. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal. Phys. Rev. Lett. 112, 213901 (2014).

    Article  ADS  Google Scholar 

  23. Zhang, B. et al. 1.4‐mJ high energy terahertz radiation from lithium niobates. Laser Photonics Rev. 15, 2000295 (2021).

    Article  ADS  Google Scholar 

  24. Dal Forno, M. et al. Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures. Phys. Rev. Accel. Beams 19, 051302 (2016).

    Article  ADS  Google Scholar 

  25. Wu, X. et al. High-gradient breakdown studies of an X -band compact linear collider prototype structure. Phys. Rev. Accel. Beams 20, 052001 (2017).

    Article  ADS  Google Scholar 

  26. Jolly, S. W. et al. Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation. Nat. Commun. 10, 2591 (2019).

    Article  ADS  Google Scholar 

  27. Zhang, D. et al. THz-enhanced DC ultrafast electron diffractometer. Ultrafast Sci. 2021, 1–7 (2021).

    Article  Google Scholar 

  28. Snively, E. C. et al. Femtosecond compression dynamics and timing jitter suppression in a THz-driven electron bunch compressor. Phys. Rev. Lett. 124, 054801 (2020).

    Article  ADS  Google Scholar 

  29. Zhao, L. et al. Femtosecond relativistic electron beam with reduced timing jitter from THz driven beam compression. Phys. Rev. Lett. 124, 054802 (2020).

    Article  ADS  Google Scholar 

  30. Wimmer, L. et al. Terahertz control of nanotip photoemission. Nat. Phys. 10, 432–436 (2014).

    Article  Google Scholar 

  31. Matte, D. et al. Extreme lightwave electron field emission from a nanotip. Phys. Rev. Res. 3, 013137 (2021).

    Article  Google Scholar 

  32. Li, S. & Jones, R. R. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses. Nat. Commun. 7, 13405 (2016).

    Article  ADS  Google Scholar 

  33. Fallahi, A., Fakhari, M., Yahaghi, A., Arrieta, M. & Kärtner, F. X. Short electron bunch generation using single-cycle ultrafast electron guns. Phys. Rev. Accel. Beams 19, 081302 (2016).

    Article  ADS  Google Scholar 

  34. Ronny Huang, W. et al. Terahertz-driven, all-optical electron gun. Optica 3, 1209–1212 (2016).

    Article  ADS  Google Scholar 

  35. Manz, S. et al. Mapping atomic motions with ultrabright electrons: towards fundamental limits in space-time resolution. Faraday Discuss. 177, 467–491 (2015).

    Article  ADS  Google Scholar 

  36. Yang, J. et al. Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science 361, 64–67 (2018).

    Article  ADS  Google Scholar 

  37. Zou, Y., Cui, Y., Reiser, M. & O’Shea, P. G. Observation of the anomalous increase of the longitudinal energy spread in a space-charge-dominated electron beam. Phys. Rev. Lett. 94, 134801 (2005).

    Article  ADS  Google Scholar 

  38. Lange, S. L., Noori, N. K., Kristensen, T. M. B., Steenberg, K. & Jepsen, P. U. Ultrafast THz-driven electron emission from metal metasurfaces. J. Appl. Phys. 128, 070901 (2020).

    Article  ADS  Google Scholar 

  39. Hachmann, M. & Flöttmann, K. Measurement of ultra low transverse emittance at REGAE. Nucl. Instrum. Methods Phys. Res. A 829, 318–320 (2016).

    Article  ADS  Google Scholar 

  40. Qi, F. et al. Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor. Phys. Rev. Lett. 124, 134803 (2020).

    Article  ADS  Google Scholar 

  41. Maxson, J. et al. Direct measurement of sub-10 fs relativistic electron beams with ultralow emittance. Phys. Rev. Lett. 118, 154802 (2017).

    Article  ADS  Google Scholar 

  42. de Loos, M. J. et al. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Phys. Rev. Lett. 105, 264801 (2010).

    Article  ADS  Google Scholar 

  43. Kim, H. W. et al. Towards jitter-free ultrafast electron diffraction technology. Nat. Photonics 14, 245–249 (2020).

    Article  ADS  Google Scholar 

  44. Zhao, L. et al. Terahertz streaking of few-femtosecond relativistic electron beams. Phys. Rev. 8, 021061 (2018).

    Article  Google Scholar 

  45. Li, R. K. et al. Terahertz-based subfemtosecond metrology of relativistic electron beams. Phys. Rev. Accel. Beams 22, 012803 (2019).

    Article  ADS  Google Scholar 

  46. Kealhofer, C. et al. All-optical control and metrology of electron pulses. Science 352, 429–433 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  47. Müller, M., Paarmann, A. & Ernstorfer, R. Femtosecond electrons probing currents and atomic structure in nanomaterials. Nat. Commun. 5, 5292 (2014).

    Article  ADS  Google Scholar 

  48. Huang, S.-W. et al. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Opt. Lett. 38, 796–798 (2013).

    Article  ADS  Google Scholar 

  49. Computer Simulation Technology. https://www.cst.com

  50. Ying, J. et al. Dataset for 'High gradient Terahertz-driven ultrafast photogun'. figshare https://doi.org/10.6084/m9.figshare.25391488 (2024).

Download references

Acknowledgements

The authors thank L. Qian for support with the laser system and helpful discussions regarding this work. D.Z. acknowledges support from the National Natural Science Foundation of China (grant no.12174255), the Science and Technology Commission of Shanghai Municipality (grant no. 22JC1401900), the Fundamental Research Funds for the Central Universities. F.X.K. acknowledges support from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) through the Synergy Grant AXSIS (609920), the Cluster of Excellence ‘Advanced Imaging of Matter’ of the Deutsche Forschungsgemeinschaft – EXC 2056 – project ID 390715994 and Project 655350 of the Deutsche Forschungsgemeinschaft and the accelerator on a chip programme funded by the Gordon and Betty Moore Foundation (GBMF4744). D.Z. also thanks the Yangyang Development Fund for sponsorship.

Author information

Authors and Affiliations

Authors

Contributions

F.X.K., D.Z. and N.H.M. conceived and coordinated the project. J.Y., X.H., D.S., L.Z. and D.Z. designed the experimental setup and carried out the experiments with the help of J.M. and P.Y. on the laser systems. T.K., T.R., M.F. and G.H.K. contributed with helpful discussion on the THz photogun design and experiments. All authors contributed to writing the article and reading and approving the final manuscript.

Corresponding authors

Correspondence to Franz X. Kärtner or Dongfang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. S1–S4 and Discussion.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, J., He, X., Su, D. et al. High gradient terahertz-driven ultrafast photogun. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01441-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01441-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing