Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Avalanche photodiode with ultrahigh gain–bandwidth product of 1,033 GHz

Abstract

Avalanche photodiodes (APDs) have enabled highly sensitive photodetection in optical communication, sensing and quantum applications. Great efforts have been focused on improving their gain–bandwidth product (GBP). However, further advance has encountered enormous barriers due to incomplete consideration of the avalanche process. Here we implement a germanium/silicon APD with the GBP breaking through 1 THz. The performance is achieved by introducing two cooperative strategies: precisely shaping the electric field distribution and elaborately engineering the resonant effect in the avalanche process. Experimentally, the presented APD has a primary responsivity of 0.87 A W−1 at unity gain, a large bandwidth of 53 GHz in the gain range of 9–19.5 and an ultrahigh GBP of 1,033 GHz under −8.6 V and at 1,550 nm. For demonstration, data reception of 112 Gb s−1 on–off keying and 200 Gb s−1 four-level pulse amplitude modulation signals per wavelength are achieved with clear eye diagrams and high sensitivity, as well as 800 G reception via four channels. This work provides a potential successor for high-speed optoelectronic devices in next-generation optical interconnects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The high-performance impedance resonance APD.
Fig. 2: Measured static/dynamic performance.
Fig. 3: The measured high-speed performance of the APD.
Fig. 4: The performance comparison of APDs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the figures and from the corresponding authors on reasonable request.

References

  1. Assefa, S., Xia, F. & Vlasov, Y. A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464, 80–84, (2010).

    Article  ADS  Google Scholar 

  2. Jones, A. H., March, S. D., Bank, S. R. & Campbell, J. C. Low-noise high-temperature AlInAsSb/GaSb avalanche photodiodes for 2-μm applications. Nat. Photonics 14, 559–563 (2020).

    Article  ADS  Google Scholar 

  3. Bruschini, C., Homulle, H., Antolovic, I. M., Burri, S. & Charbon, E. Single-photon avalanche diode imagers in biophotonics: review and outlook. Light Sci. Appl. 8, 87 (2019).

    Article  ADS  Google Scholar 

  4. Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696–705 (2009).

    Article  ADS  Google Scholar 

  5. Wang, B. et al. A low-voltage Si–Ge avalanche photodiode for high-speed and energy efficient silicon photonic links. J. Lightwave Technol. 38, 3156–3163 (2019).

    Article  ADS  Google Scholar 

  6. Kumar, A. et al. Design considerations for energy efficient DWDM PAM4 transceivers employing avalanche photodiodes. Laser Photonics Rev. 14, 2000142 (2020).

    Article  ADS  Google Scholar 

  7. Winzer, P. J. & Neilson, D. T. From scaling disparities to integrated parallelism: a decathlon for a decade. J. Lightwave Technol. 35, 1099–1115 (2017).

    Article  ADS  Google Scholar 

  8. Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics 7, 354–362 (2013).

    Article  ADS  Google Scholar 

  9. Liu, J. et al. 1-Pbps orbital angular momentum fibre-optic transmission. Light Sci. Appl. 11, 202 (2022).

    Article  ADS  Google Scholar 

  10. Lischke, S. et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat. Photonics 15, 925–931 (2021).

    Article  ADS  Google Scholar 

  11. Cheng, Q., Bahadori, M., Glick, M., Rumley, S. & Bergman, K. Recent advances in optical technologies for data centers: a review. Optica 5, 1354–1370 (2018).

    Article  ADS  Google Scholar 

  12. Emmons, R. Avalanche-photodiode frequency response. J. Appl. Phys. 38, 3705–3714 (1967).

    Article  ADS  Google Scholar 

  13. Campbell, J. C. Recent advances in telecommunications avalanche photodiodes. J. Lightwave Technol. 25, 109–121 (2007).

    Article  ADS  Google Scholar 

  14. Wang, P.-S. et al. Top-illuminated avalanche photodiodes with cascaded multiplication layers for high-speed and wide dynamic range performance. J. Lightwave Technol. 40, 7893–7900 (2022).

    Article  ADS  Google Scholar 

  15. Kinsey, G., Campbell, J. & Dentai, A. Waveguide avalanche photodiode operating at 1.55 μm with a gain–bandwidth product of 320 GHz. IEEE Photonics Tech. Lett. 13, 842–844 (2001).

    Article  ADS  Google Scholar 

  16. Okimoto, T. et al. 106-Gb/s waveguide AlInAs/GaInAs avalanche photodiode with butt-joint coupling structure. In 2022 Optical Fiber Communications Conference and Exhibition 1–3 (IEEE, 2022).

  17. Yi, X. et al. Extremely low excess noise and high sensitivity AlAs0. 56Sb0. 44 avalanche photodiodes. Nat. Photonics 13, 683–686 (2019).

    Article  ADS  Google Scholar 

  18. March, S. D., Jones, A. H., Campbell, J. C. & Bank, S. R. Multistep staircase avalanche photodiodes with extremely low noise and deterministic amplification. Nat. Photonics 15, 468–474 (2021).

    Article  ADS  Google Scholar 

  19. Kang, Y. et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat. Photonics 3, 59–63 (2009).

    Article  ADS  Google Scholar 

  20. Huang, Z. et al. 25 Gbps low-voltage waveguide Si-Ge avalanche photodiode. Optica 3, 793–798, (2016).

    Article  ADS  Google Scholar 

  21. Zeng, X. et al. Silicon–germanium avalanche photodiodes with direct control of electric field in charge multiplication region. Optica 6, 772–777, (2019).

    Article  ADS  Google Scholar 

  22. Wang, B. et al. 64 Gb/s low-voltage waveguide SiGe avalanche photodiodes with distributed Bragg reflectors. Photonics Res. 8, 1118–1123, (2020).

    Article  Google Scholar 

  23. Xiang, Y., Cao, H., Liu, C., Guo, J. & Dai, D. High-speed waveguide Ge/Si avalanche photodiode with a gain–bandwidth product of 615 GHz. Optica 9, 762–769 (2022).

    Article  ADS  Google Scholar 

  24. Benedikovic, D. et al. Silicon-germanium receivers for short-wave-infrared optoelectronics and communications. Nanophotonics 10, 1059–1079 (2021).

    Article  Google Scholar 

  25. Hayat, M. M., Sargeant, W. L. & Saleh, B. E. Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes. IEEE J. Quantum Elect. 28, 1360–1365 (1992).

    Article  ADS  Google Scholar 

  26. Saleh, M. A. et al. Impact-ionization and noise characteristics of thin III-V avalanche photodiodes. IEEE Trans. Electron. Devices 48, 2722–2731 (2001).

    Article  ADS  Google Scholar 

  27. Dai, D. et al. Resonant normal-incidence separate–absorption–charge–multiplication Ge/Si avalanche photodiodes. Opt. Express 17, 16549–16557, (2009).

    Article  ADS  Google Scholar 

  28. Zeng, Q. et al. Space charge effects on the bandwidth of Ge/Si avalanche photodetectors. Semicond. Sci. Tech. 35, 035026 (2020).

    Article  ADS  Google Scholar 

  29. Dai, D., Rodwell, M. J., Bowers, J. E., Kang, Y. & Morse, M. Derivation of the small signal response and equivalent circuit model for a separate absorption and multiplication layer avalanche photodetector. IEEE J. Sel. Top. Quant. 16, 1328–1336 (2010).

    Article  Google Scholar 

  30. Kim, G., Kim, I. G., Baek, J. H. & Kwon, O. K. Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector. Appl. Phys. Lett. 83, 1249–1251 (2003).

    Article  ADS  Google Scholar 

  31. Kang, H.-S., Lee, M.-J. & Choi, W.-Y. Si avalanche photodetectors fabricated in standard complementary metal-oxide-semiconductor process. Appl. Phys. Lett. 90, 151118 (2007).

    Article  ADS  Google Scholar 

  32. Shi, J.-W., Wu, Y.-S., Li, Z.-R. & Chen, P.-S. Impact-ionization-induced bandwidth-enhancement of a Si–SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain–bandwidth product of 428 GHz. IEEE Photonic Tech. Lett. 19, 474–476 (2007).

    Article  ADS  Google Scholar 

  33. Zaoui, W. S. et al. Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840GHz gain–bandwidth-product. Opt. Express 17, 12641–12649, (2009).

    Article  ADS  Google Scholar 

  34. Srinivasan, S. A. et al. 27 GHz silicon-contacted waveguide-coupled Ge/Si avalanche photodiode. J. Lightwave Technol. 38, 3044–3050 (2020).

    Article  ADS  Google Scholar 

  35. Srinivasan, S. A. et al. 56 Gb/s NRZ O-band hybrid BiCMOS-silicon photonics receiver using Ge/Si avalanche photodiode. J Lightwave Technol. 39, 1409–1415 (2020).

    Article  ADS  Google Scholar 

  36. Decker, D. & Dunn, C. Determination of germanium ionization coefficients from small-signal IMPATT diode characteristics. IEEE Trans. Electron. Devices 17, 290–299 (1970).

    Article  ADS  Google Scholar 

  37. Shi, Y., Zhou, D., Yu, Y. & Zhang, X. 80 GHz germanium waveguide photodiode enabled by parasitic parameter engineering. Photonics Res. 9, 605–609 (2021).

    Article  Google Scholar 

  38. Saleh, M. A. et al. Breakdown voltage in thin III-V avalanche photodiodes. Appl. Phys. Lett. 79, 4037–4039 (2001).

    Article  ADS  Google Scholar 

  39. Guo, B. et al. Temperature dependence of avalanche breakdown of AlGaAsSb and AlInAsSb avalanche photodiodes. J. Lightwave Technol. 40, 5934–5942 (2022).

    Article  ADS  Google Scholar 

  40. Ware, M. et al. Architecting for power management: the IBM® POWER7™ approach. In HPCA-16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture 1–11 (IEEE, 2010).

  41. Benedikovic, D. et al. 40 Gbps heterostructure germanium avalanche photo receiver on a silicon chip. Optica 7, 775–783, (2020).

    Article  ADS  Google Scholar 

  42. Wang, B. & Mu, J. High-speed Si–Ge avalanche photodiodes. PhotoniX 3, 1–22 (2022).

    Article  Google Scholar 

  43. Zhu, S. et al. Waveguided Ge/Si avalanche photodiode with separate vertical SEG-Ge absorption, lateral Si charge, and multiplication configuration. IEEE Electr. Device Lett. 30, 934–936 (2009).

    Article  ADS  Google Scholar 

  44. Duan, N., Liow, T.-Y., Lim, A. E.-J., Ding, L. & Lo, G. 310 GHz gain–bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection. Opt. Express 20, 11031–11036, (2012).

    Article  ADS  Google Scholar 

  45. Kim, G., Kim, S., Kim, S. A., Oh, J. H. & Jang, K.-S. NDR-effect vertical-illumination-type Ge-on-Si avalanche photodetector. Opt. Lett. 43, 5583–5586 (2018).

    Article  ADS  Google Scholar 

  46. Nada, M., Yamada, Y. & Matsuzaki, H. Responsivity–bandwidth limit of avalanche photodiodes: toward future ethernet systems. IEEE J. Sel. Top. Quant. 24, 1–11 (2017).

    Article  Google Scholar 

  47. Shi, B. et al. 106 Gb/s normal-incidence Ge/Si avalanche photodiode with high sensitivity. In 2020 Optical Fiber Communications Conference and Exhibition 1–3 (IEEE, 2020).

  48. David, J. & Tan, C. Material considerations for avalanche photodiodes. IEEE J. Sel. Top. Quant. 14, 998–1009 (2008).

    Article  Google Scholar 

  49. Siew, S. Y. et al. Review of silicon photonics technology and platform development. J. Lightwave Technol. 39, 4374–4389 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (2019YFB1803801 received by Y.Y.), National Natural Science Foundation of China (61922034 and 62135004 received by Y.Y.), Key Research and Development Program of Hubei Province (2021BAA005 received by Y.Y.), Innovation Project of Optics Valley Laboratory (OVL2021BG005 received by Y.Y. and X.Z.) and Program for HUST Academic Frontier Youth Team (2018QYTD08 received by Y.Y.).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and Y.Y. jointly conceived the idea. Y.S. conducted simulation and designed the device. X.L. designed the equalization algorithm for high-speed signal reception. G.C. dealt with the chip fabrication. Y.S., M.Z. and H.C. performed the experiments. All authors contributed to the discussion of experimental results. Y.S. and Y.Y. wrote the manuscript with contributions from all co-authors. Y.Y. and X.Z. supervised and coordinated all the work.

Corresponding authors

Correspondence to Yu Yu or Xinliang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Li, X., Chen, G. et al. Avalanche photodiode with ultrahigh gain–bandwidth product of 1,033 GHz. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01421-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01421-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing