Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extreme focusing of hard X-ray free-electron laser pulses enables 7 nm focus width and 1022 W cm2 intensity

Abstract

By illuminating matter with bright and intense light, researchers gain insights into material composition and properties. In the regime of extremely short wavelengths, X-ray free-electron lasers (XFELs) with exceptional peak brilliance have unveiled crucial details about the structures, dynamics and physics of various materials. Although X-ray focusing optics to enhance the intensity have progressed, achieving a single-nanometre focal spot that fully exploits the source performance remains elusive. Aberrations arising from reflective optical schemes noticeably degrade the focal spot, even in the presence of inevitably slight angular transition and pointing errors. Here we present an approach that directly forms a source image in an extremely small focal spot, achieving 7 nm focusing, in both transverse dimensions, of 9.1 keV XFELs with the extremely high intensity of 1.45 × 1022 W cm2. This was made possible by a scheme combining concave and convex X-ray mirrors with suppressed aberrations and high angular tolerances. The attained highly intense X-rays, surpassing the previous intensity by a hundred-fold, induced the vigorous ionization of chromium, suggesting the creation of solid-density heavy bare atomic nuclei. Our results, which demonstrate the realization of stable ultraintense XFEL beams by forming demagnified source images, hold immediate significance to a wide range of research fields, including atomic, molecular and optical physics and high-energy-density sciences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: XFEL sub-10 nm focusing optics.
Fig. 2: Focus characterization results.
Fig. 3: Achieved intensity.
Fig. 4: Fluorescence emission spectra from Cr.

Similar content being viewed by others

Data availability

The source data presented in the figures are provided with this paper. Additional data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

All non-standard code used to analyse the data is available from the corresponding authors upon reasonable request.

References

  1. Elder, F. R., Gurewitsch, A. M., Langmuir, R. V. & Pollock, H. C. Radiation from electrons in a synchrotron. Phys. Rev. 71, 829 (1947).

    Article  ADS  CAS  Google Scholar 

  2. Rowe, E. M. & Mills, F. E. Tantalus I: a dedicated storage ring synchrotron radiation source. Part. Accl. 4, 211–227 (1973).

    Google Scholar 

  3. Worgan, J. S. The status of the SRS facility. Nucl. Instrum. Methods Phys. Res. 195, 49–57 (1982).

    Article  ADS  Google Scholar 

  4. Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010).

    Article  ADS  CAS  Google Scholar 

  5. Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photonics 6, 540–544 (2012).

    Article  ADS  CAS  Google Scholar 

  6. Kang, H. S. et al. Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photonics 11, 708–713 (2017).

    Article  ADS  CAS  Google Scholar 

  7. Prat, E. et al. A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam. Nat. Photonics 14, 748–754 (2020).

    Article  ADS  CAS  Google Scholar 

  8. Decking, W. et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photonics 14, 391–397 (2020).

    Article  ADS  CAS  Google Scholar 

  9. Kondratenko, K. & Saldin, E. Generating of coherent radiation by a relativistic electron beam in an ondulator. Part. Accel. 10, 207–216 (1980).

    CAS  Google Scholar 

  10. Bonifacio, R., Pellegrini, C. & Narducci, L. M. Collective instabilities and high-gain regime in a free-electron laser. Opt. Commun. 50, 373–377 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Ice, G. E., Budai, J. D. & Pang, J. W. L. The race to X-ray microbeam and nanobeam science. Science 334, 1234–1239 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Cocco, D. et al. Wavefront preserving X-ray optics for synchrotron and free electron laser photon beam transport systems. Phys. Rep. 974, 1–40 (2022).

    Article  ADS  CAS  Google Scholar 

  13. Mohacsi, I. et al. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range. Sci. Rep. 7, 43624 (2017).

    Article  ADS  PubMed Central  Google Scholar 

  14. Bajt, S. et al. X-ray focusing with efficient high-NA multilayer Laue lenses. Light Sci. Appl. 7, 17162 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kirkpatrick, P. & Baez, A. V. Formation of optical images by X-rays. J. Opt. Soc. Am. 38, 766–774 (1948).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Yumoto, H. et al. Focusing of X-ray free-electron laser pulses with reflective optics. Nat. Photonics 7, 43–47 (2013).

    Article  ADS  CAS  Google Scholar 

  17. Yumoto, H. et al. Nanofocusing optics for an X-ray free-electron laser generating an extreme intensity of 100 EW/cm2 using total reflection mirrors. Appl. Sci. 10, 2611 (2020).

    Article  CAS  Google Scholar 

  18. Seaberg, M. et al. The X-ray focusing system at the time-resolved AMO instrument. Synchrotron Rad. News 35, 20–28 (2022).

    Google Scholar 

  19. Yamauchi, K., Mimura, H., Inagaki, K. & Mori, Y. Figuring with subnanometer level accuracy by numerically controlled elastic emission machining. Rev. Sci. Instrum. 73, 4028–4033 (2002).

    Article  ADS  CAS  Google Scholar 

  20. Yamauchi, K. et al. Microstitching interferometry for X-ray reflective optics. Rev. Sci. Instrum. 74, 2894–2898 (2003).

    Article  ADS  CAS  Google Scholar 

  21. Mimura, H. et al. Relative angle determinable stitching interferometry for hard X-ray reflective optics. Rev. Sci. Instrum. 76, 045102 (2005).

    Article  ADS  Google Scholar 

  22. Kimura, T. et al. Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nat. Commun. 5, 3052 (2014).

    Article  ADS  PubMed  Google Scholar 

  23. Tamasaku, K. et al. X-ray two-photon absorption competing against single and sequential multiphoton processes. Nat. Photonics 8, 313–316 (2014).

    Article  ADS  CAS  Google Scholar 

  24. Fuchs, M. et al. Anomalous nonlinear X-ray Compton scattering. Nat. Phys. 11, 964–970 (2015).

    Article  CAS  Google Scholar 

  25. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Mimura, H. et al. Generation of 1020 W cm−2 hard X-ray laser pulses with two-stage reflective focusing system. Nat. Commun. 5, 3539 (2014).

    Article  ADS  PubMed  Google Scholar 

  27. Matsuyama, S. et al. Nanofocusing of X-ray free-electron laser using wavefront-corrected multilayer focusing mirrors. Sci. Rep. 8, 17440 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koyama, T. et al. Double-multilayer monochromators for high-energy and large-field X-ray imaging applications with intense pink beams at SPring-8 BL20B2. J. Synchrotron Radiat. 29, 1265–1272 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mimura, H. et al. Breaking the 10 nm barrier in hard-X-ray focusing. Nat. Phys. 6, 122–125 (2010).

    Article  CAS  Google Scholar 

  30. Yamauchi, K. et al. Single-nanometer focusing of hard X-rays by Kirkpatrick–Baez mirrors. J. Phys. Condens. Matter 23, 394206 (2011).

    Article  PubMed  Google Scholar 

  31. Yamada, J. et al. Compact reflective imaging optics in hard X-ray region based on concave and convex mirrors. Opt. Express 27, 3429–3438 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Matsuyama, S. et al. 50-nm-resolution full-field X-ray microscope without chromatic aberration using total-reflection imaging mirrors. Sci. Rep. 7, 46358 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wolter, H. Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen. Ann. Phys. 445, 94–114 (1952).

    Article  Google Scholar 

  34. Yamada, J. et al. Compact full-field hard X-ray microscope based on advanced Kirkpatrick–Baez mirrors. Optica 7, 367–370 (2020).

    Article  ADS  CAS  Google Scholar 

  35. Yamada, J. et al. X-ray single-grating interferometry for wavefront measurement and correction of hard X-ray nanofocusing mirrors. Sensors 20, 7356 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Rodenburg, J. M. et al. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 98, 034801 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Kewish, C. M. et al. Ptychographic characterization of the wavefield in the focus of reflective hard X-ray optics. Ultramicroscopy 110, 325–329 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Odstrcil, M. et al. Ptychographic coherent diffractive imaging with orthogonal probe relaxation. Opt. Express 24, 8360–8369 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Sala, S. et al. Pulse-to-pulse wavefront sensing at free-electron lasers using ptychography. J. Appl. Crystallogr. 53, 949–956 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tono, K. et al. Beamline for X-ray free electron laser of SACLA. J. Phys. 425, 072006 (2013).

    CAS  Google Scholar 

  42. Inoue, I. et al. X-ray Hanbury Brown–Twiss interferometry for determination of ultrashort electron-bunch duration. Phys. Rev. Accel. Beams 21, 080704 (2018).

    Article  ADS  Google Scholar 

  43. Inoue, I. et al. Shortening X-ray pulse duration via saturable absorption. Phys. Rev. Lett. 127, 163903 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Osaka, T. et al. Hard x-ray intensity autocorrelation using direct two-photon absorption. Phys. Rev. Res. 4, L012035 (2022).

    Article  CAS  Google Scholar 

  45. Vinko, S. M. et al. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature 482, 59–62 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Yeh, J. J. & Lindau, I. Atomic subshell photoionization cross sections and asymmetry parameters: 1 < Z < 103. At. Data Nucl. Data Tables 32, 1–155 (1985).

    Article  ADS  CAS  Google Scholar 

  47. Ohno, M. & van Riessen, G. A. Hole-lifetime width: a comparison between theory and experiment. J. Electron Spectros. Relat. Phenomena 128, 1–31 (2003).

    Article  CAS  Google Scholar 

  48. Hollinger, H. et al. Extreme ionization of heavy atoms in solid-density plasmas by relativistic second-harmonic laser pulses. Nat. Photonics 14, 607–611 (2020).

    Article  ADS  CAS  Google Scholar 

  49. Inoue, I. et al. Femtosecond reduction of atomic scattering factors triggered by intense X-ray pulse. Phys. Rev. Lett. 131, 163201 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Handa, S. et al. Highly accurate differential deposition for X-ray reflective optics. Surf. Interface Anal. 40, 1019–1022 (2008).

    Article  CAS  Google Scholar 

  51. Tono, K., Hara, T., Yabashi, M. & Tanaka, H. Multiple-beamline operation of SACLA. J. Synchrotron Rad. 26, 595–602 (2019).

    Article  CAS  Google Scholar 

  52. Yamada, J. et al. Simulation of concave–convex imaging mirror system for development of a compact and achromatic full-field x-ray microscope. Appl. Opt. 56, 967–974 (2017).

    Article  ADS  PubMed  Google Scholar 

  53. Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156–160 (1982).

    Article  ADS  Google Scholar 

  54. Huang, L. et al. Comparison of two-dimensional integration methods for shape reconstruction from gradient data. Opt. Laser. Eng. 64, 1–11 (2015).

    Article  Google Scholar 

  55. Liu, Y. et al. High-accuracy wavefront sensing for X-ray free electron lasers. Optica 5, 967–975 (2018).

    Article  ADS  CAS  Google Scholar 

  56. Kameshima, T. et al. Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments. Rev. Sci. Instrum. 85, 033110 (2014).

    Article  ADS  PubMed  Google Scholar 

  57. Zhang, F. et al. Translation position determination in ptychographic coherent diffraction imaging. Opt. Express 21, 13592–13606 (2013).

    Article  ADS  PubMed  Google Scholar 

  58. Yumoto, H. et al. High-fluence and high-gain multilayer focusing optics to enhance spatial resolution in femtosecond X-ray laser imaging. Nat. Commun. 13, 5300 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thibault, P. & Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 494, 68–71 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Robisch, A.-L., Kröger, K., Rack, A. & Salditt, T. Near-field ptychography using lateral and longitudinal shifts. New J. Phys. 17, 073033 (2015).

    Article  ADS  Google Scholar 

  61. Yoneda, H. et al. Saturable absorption of intense hard X-rays in iron. Nat. Commun. 5, 5080 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Chung, H.-K., Chen, M. H., Morgan, W. L., Ralchenko, Y. & Lee, R. W. FLYCHK: generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energy Density Phys. 1, 3–12 (2005).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Takano, H. Mimura, H. Yoneda, S. Goto, T. Hara and H. Tanaka for discussions. We are grateful to A. Ito, K. Shioi, A. Yakushigawa, G. Yamaguchi, Y. Kohmura, T. Ishikawa and all the staff of SACLA for their support. The experiments were carried out at SACLA with the approvals of the Japan Synchrotron Radiation Research Institute (JASRI) (proposal nos. 2020A8131, 2021A8049, 2021B8035, 2022A8033, 2022B8032 and 2023A8045). This research was financially supported by Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science (JSPS; grant nos. JP23K17149 (J.Y.), JP19K23434 (J.Y.), JP21H05004 (K.Y.), JP22H03877 (I.I.), JP22K18131 (T.O.), JP18H03478 (Y.I.) and JP23H03672 (Y.I.)) and FOREST Program from Japan Science and Technology Agency (JST; grant no. JPMJFR202Y (S.M.)). J.Y. and K.Y. acknowledge the SACLA Basic Development Program. J.Y. acknowledges the special postdoctoral researcher programme of RIKEN.

Author information

Authors and Affiliations

Authors

Contributions

J.Y., M.Y. and K.Y. conceived the project. J.Y. designed the mirrors with advice from all co-authors. J.Y., S.M., T.I. and N.N. performed the mirror characterization and shape correction. J.Y., S.M., I.I., T.O., H.Y., T.K., H.O. and M.Y. developed the apparatus. J.Y., I.I., T.O., Y.I., T.Y., K. Tono, K. Tamasaku and M.Y. designed the commissioning plan with advice from all co-authors. J.Y., S.M., T.I. and Y.T. performed the XFEL experiments. J.Y. analysed the experimental data. J.Y. and M.Y. co-wrote the manuscript with input from all authors. All authors discussed the results and agreed on the published version of the manuscript.

Corresponding author

Correspondence to Jumpei Yamada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks David Attwood, Heung-Sik Kang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Design of Wolter-III based AKB mirrors.

(a) Cross-section of the Wolter-III based AKB mirrors designed for sub-10 nm focusing of XFEL. (b) Mirror shapes and radii of curvature of the designed four mirrors. (c) Lateral profiles of multilayer parameters: d-space, Pt-layer thickness, C-layer thickness, and γ parameter. (d) Reflectivities of the multilayers measured and calculated at a photon energy of 8.048 keV (Cu Kα). Results of the film thickness/roughness are summarized in inset tables.

Source data

Extended Data Fig. 2 Results of ptychographic characterization.

(a) Scanning electron microscope image of the sample used in ptychography. Logos of the authors’ affiliations are drawn. (b) Phase image of the sample reconstructed using the single-mode ePIE. (c) Phase image of the sample reconstructed using the OPR-enhanced ePIE. (d) Five components of the reconstructed illumination wavefield obtained via OPR-based ptychography, with their corresponding singular values displayed in the upper right corner of each panel. The hue indicates the phase distribution, while the brightness represents the amplitude. (e) The first row displays four selected wavefields out of the total 196 retrieved wavefields. The second row shows the propagated focus intensities. (f) Illumination position errors along the horizontal and vertical direction, corresponding to the relative positional vibration between the focused beam and the sample.

Extended Data Fig. 3 Comparison of wavefront errors measured by s-GI and ptychography.

The s-GI measurement was performed just after the ptychography scan. The wavefield measured by ptychography was propagated to the same defocus distance as the s-GI measurement. (a) Two-dimensional wavefront errors. (b) One-dimensional averaged profile of (a).

Extended Data Fig. 4 Experiments for the fluorescence emission from Cr.

(a) Schematic of the setup for fluorescence emission measurement. (b, c) Intensity maps of emitted spectra normalized by (b) the incident pulse energy and (c) the sum of the measured emission intensity. The right graphs show the one-dimensional profiles of the summation of the intensity between 5.2 and 7.1 keV.

Extended Data Table 1 Optical design parameters of the Wolter-III based AKB mirrors

Supplementary information

Supplementary Video 1

Results of focus characterization via OPR-based ptychography. For measured 196 pulses, the reconstructed wavefields, back-propagated focused intensities, cross-sections of focused intensity along the horizontal axis and the cross-sections along the vertical axis are shown in a 15 fps movie.

Source data

Source Data Fig. 1

Statistical source data of Fig. 1a,b.

Source Data Fig. 2

Full-length data of Fig. 2a. Full-length data of Fig. 2b amplitude. Full-length data of Fig. 2b phase. Full-length data of Fig. 2c. Full-length data of inset of Fig. 2c. Full-length data of Fig. 2d horizontal (Hor.). Full-length data of Fig. 2d (vertical, Ver.). Statistical source data of Fig. 2e–h.

Source Data Fig. 3

Statistical source data of Fig. 3.

Source Data Fig. 4

Full-length data of Fig. 4a.

Source Data Fig. 5

Statistical source data of Fig. 4a,b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, J., Matsuyama, S., Inoue, I. et al. Extreme focusing of hard X-ray free-electron laser pulses enables 7 nm focus width and 1022 W cm2 intensity. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01411-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01411-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing