Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polariton spin Hall effect in a Rashba–Dresselhaus regime at room temperature

Abstract

Exciton–polaritons—light–matter quasiparticles with spin degrees of freedom and ultrafast dynamics—are a promising platform for spin-based applications. However, an ongoing challenge is the generation and manipulation of high-purity polariton spins over macroscopic distances at room temperature. Here, by creating synthetic spin–orbit coupling in perovskite microcavities with liquid crystal molecules, we demonstrate the polariton spin Hall effect in the Rashba–Dresselhaus regime at room temperature, where spin-polarized polaritons with a high chirality of 0.88 are permanently separated as they propagate over 45 μm. We further show that their spin transport behaviours can be effectively manipulated by external electrical voltages. Our work represents an important step to generate purer polariton spin currents, paving the way to spin-optoelectronic applications with polaritons, such as spin lasers, spin filters and spin logic gates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Perovskite microcavity filled with LC molecules.
Fig. 2: Exciton–polaritons in the RDSOC regime.
Fig. 3: Observation of the polariton spin Hall effect in the Rashba–Dresselhaus regime.
Fig. 4: Electrically tunable polariton spin Hall effect.

Similar content being viewed by others

Data availability

The data that support the plots within this paper are available via Zenodo at https://doi.org/10.5281/zenodo.10207258. All other data used in this study are available from the corresponding authors upon reasonable request.

Code availability

The codes are available from the corresponding authors upon reasonable request.

References

  1. Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Article  ADS  Google Scholar 

  2. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  ADS  Google Scholar 

  3. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  ADS  Google Scholar 

  4. Sih, V. et al. Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases. Nat. Phys. 1, 31–35 (2005).

    Article  Google Scholar 

  5. Kavokin, A. V., Malpuech, G. & Glazov, M. Optical spin Hall effect. Phys. Rev. Lett. 95, 136601 (2005).

    Article  ADS  Google Scholar 

  6. Leyder, C. et al. Observation of the optical spin Hall effect. Nat. Phys. 3, 628–631 (2007).

    Article  Google Scholar 

  7. Hosten, O. & Kwiat, P. Observation of the spin Hall effect of light via weak measurements. Science 319, 787–790 (2008).

    Article  ADS  Google Scholar 

  8. Kavokin, K. V., Shelykh, I. A., Kavokin, A. V., Malpuech, G. & Bigenwald, P. Quantum theory of spin dynamics of exciton-polaritons in microcavities. Phys. Rev. Lett. 92, 017401 (2004).

    Article  ADS  Google Scholar 

  9. Kavokin, A. V., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities (Oxford Univ. Press, 2017).

  10. Amo, A. et al. Exciton–polariton spin switches. Nat. Photon. 4, 361–366 (2010).

    Article  ADS  Google Scholar 

  11. Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 4, 1778 (2013).

    Article  ADS  Google Scholar 

  12. Sanvitto, D. & Kena-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    Article  ADS  Google Scholar 

  13. Dreismann, A. et al. A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates. Nat. Mater. 15, 1074–1078 (2016).

    Article  ADS  Google Scholar 

  14. Dufferwiel, S. et al. Spin textures of exciton-polaritons in a tunable microcavity with large TE-TM splitting. Phys. Rev. Lett. 115, 246401 (2015).

    Article  ADS  Google Scholar 

  15. Sedov, E. S., Rubo, Y. G. & Kavokin, A. V. Polariton polarization rectifier. Light Sci. Appl. 8, 79 (2019).

    Article  ADS  Google Scholar 

  16. Solnyshkov, D. D., Flayac, H. & Malpuech, G. Stable magnetic monopoles in spinor polariton condensates. Phys. Rev. B 85, 073105 (2012).

    Article  ADS  Google Scholar 

  17. Manni, F., Léger, Y., Rubo, Y. G., André, R. & Deveaud, B. Hyperbolic spin vortices and textures in exciton–polariton condensates. Nat. Commun. 4, 2590 (2013).

    Article  ADS  Google Scholar 

  18. Bardyn, C.-E., Karzig, T., Refael, G. & Liew, T. C. H. Topological polaritons and excitons in garden-variety systems. Phys. Rev. B 91, 161413 (2015).

    Article  ADS  Google Scholar 

  19. Nalitov, A., Solnyshkov, D. D. & Malpuech, G. Polariton Z topological insulator. Phys. Rev. Lett. 114, 116401 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  20. Solnyshkov, D. D., Nalitov, A. V. & Malpuech, G. Kibble-Zurek mechanism in topologically nontrivial zigzag chains of polariton micropillars. Phys. Rev. Lett. 116, 046402 (2016).

    Article  ADS  Google Scholar 

  21. Klembt, S. et al. Exciton-polariton topological insulator. Nature 562, 552–556 (2018).

    Article  ADS  Google Scholar 

  22. Su, R., Ghosh, S., Liew, T. C. H. & Xiong, Q. Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv. 7, eabf8049 (2021).

    Article  ADS  Google Scholar 

  23. Amo, A. et al. Anisotropic optical spin Hall effect in semiconductor microcavities. Phys. Rev. B 80, 165325 (2009).

    Article  ADS  Google Scholar 

  24. Kammann, E. et al. Nonlinear optical spin Hall effect and long-range spin transport in polariton lasers. Phys. Rev. Lett. 109, 036404 (2012).

    Article  ADS  Google Scholar 

  25. Flayac, H., Solnyshkov, D. D., Shelykh, I. A. & Malpuech, G. Transmutation of skyrmions to half-solitons driven by the nonlinear optical spin Hall effect. Phys. Rev. Lett. 110, 016404 (2013).

    Article  ADS  Google Scholar 

  26. Nalitov, A. V., Malpuech, G., Terças, H. & Solnyshkov, D. D. Spin-orbit coupling and the optical spin Hall effect in photonic graphene. Phys. Rev. Lett. 114, 026803 (2015).

    Article  ADS  Google Scholar 

  27. Shi, Y. et al. Coherent optical spin Hall transport for spin-optronics at room temperature. Preprint at https://arxiv.org/abs/2304.12854 (2023).

  28. Antón, C. et al. Optical control of spin textures in quasi-one-dimensional polariton condensates. Phys. Rev. B 91, 075305 (2015).

    Article  ADS  Google Scholar 

  29. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    Article  ADS  Google Scholar 

  30. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin-orbit coupling. Nat. Mater. 14, 871–882 (2015).

    Article  ADS  Google Scholar 

  31. Nichele, F. et al. Generation and detection of spin currents in semiconductor nanostructures with strong spin-orbit interaction. Phys. Rev. Lett. 114, 206601 (2015).

    Article  ADS  Google Scholar 

  32. Lekenta, K. et al. Tunable optical spin Hall effect in a liquid crystal microcavity. Light Sci. Appl. 7, 74 (2018).

    Article  ADS  Google Scholar 

  33. Rechcińska, K. et al. Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science 366, 727–730 (2019).

    Article  ADS  Google Scholar 

  34. Su, R. et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv. 4, eaau0244 (2018).

    Article  ADS  Google Scholar 

  35. Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).

    Article  Google Scholar 

  36. Su, R. et al. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat. Mater. 20, 1315–1324 (2021).

    Article  ADS  Google Scholar 

  37. Peng, K. et al. Room-temperature polariton quantum fluids in halide perovskites. Nat. Commun. 13, 7388 (2022).

    Article  ADS  Google Scholar 

  38. Tao, R. et al. Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature. Nat. Mater. 21, 761–766 (2022).

    Article  ADS  Google Scholar 

  39. Król, M. et al. Realizing optical persistent spin helix and Stern–Gerlach deflection in an anisotropic liquid crystal microcavity. Phys. Rev. Lett. 127, 190401 (2021).

    Article  ADS  Google Scholar 

  40. Kokhanchik, P., Sigurdsson, H., Piętka, B., Szczytko, J. & Lagoudakis, P. G. Photonic Berry curvature in double liquid crystal microcavities with broken inversion symmetry. Phys. Rev. B 103, L081406 (2021).

    Article  ADS  Google Scholar 

  41. Li, Y. et al. Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature. Nat. Commun. 13, 3785 (2022).

    Article  ADS  Google Scholar 

  42. Łempicka-Mirek, K. et al. Electrically tunable Berry curvature and strong light-matter coupling in liquid crystal microcavities with 2D perovskite. Sci. Adv. 8, eabq7533 (2022).

    Article  ADS  Google Scholar 

  43. Jia, J. et al. Circularly polarized electroluminescence from a single-crystal organic microcavity light-emitting diode based on photonic spin-orbit interactions. Nat. Commun. 14, 31 (2023).

    Article  ADS  Google Scholar 

  44. Liang, Q. et al. Circularly polarized lasing from a microcavity filled with achiral single-crystalline microribbons. Angew. Chem. Int. Ed. 62, e202213229 (2023).

    Article  Google Scholar 

  45. Lovett, S. et al. Observation of Zitterbewegung in photonic microcavities. Light Sci. Appl. 12, 126 (2023).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

R.S. and T.C.H.L. gratefully acknowledge funding support from the Singapore Ministry of Education via the AcRF Tier 3 programme ‘Geometrical Quantum Materials’ (MOE2018-T3-1-002) as well as the AcRF Tier 2 grant (MOE-T2EP50222-0008) and Tier 1 grant (RG80/23). R.S. also gratefully acknowledges funding support from the Nanyang Technological University via a Nanyang Assistant Professorship start-up grant and the Singapore National Research Foundation via a Competitive Research Program (grant no. NRF-CRP23-2019-0007). Y.G.R. and T.C.H.L. gratefully acknowledge funding support from PAPIIT-UNAM grant IN108524.

Author information

Authors and Affiliations

Authors

Contributions

R.S. conceived the idea and supervised the whole project. J.L. fabricated the devices and conducted the optical spectroscopy measurements. W.W. and F.J. prepared the samples and provided help on the measurements. Y.G.R. and T.C.H.L. performed the theoretical calculation and discussed the results. R.S. and J.L. wrote the paper with input from all the authors.

Corresponding authors

Correspondence to Timothy C. H. Liew or Rui Su.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Alexey Kavokin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Sections 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Wen, W., Jin, F. et al. Polariton spin Hall effect in a Rashba–Dresselhaus regime at room temperature. Nat. Photon. 18, 357–362 (2024). https://doi.org/10.1038/s41566-023-01375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01375-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing