Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Switchable interfacial reaction enables bright and stable deep-red perovskite light-emitting diodes

Abstract

High-performance deep-red light-emitting diodes (LEDs) are important for biomedical and agricultural applications. However, the development of bright and stable solution-processed deep-red LEDs remains challenging. Here we design a switchable interfacial deprotonation reaction between the perovskite and electron-transporting layer to fabricate high-quality CsPbI3 perovskite films, leading to stable and bright deep-red LEDs. Our approach starts with a precursor solution containing guanidine hydroiodide and a layer of alkaline zinc hydroxide. On annealing, the interfacial reaction is switched on, leading to the formation of high-quality CsPbI3. The alkaline zinc hydroxide layer is simultaneously converted in situ to alkalescent ZnO, which prevents the formation of the undesirable yellow-phase CsPbI3 perovskite. As a result, our perovskite LEDs based on CsPbI3 demonstrate a long half-lifetime of approximately 33.6 h under a driving current density of 100 mA cm–2 and an exceptionally high radiance of around 1,980 W sr−1 m–2. Moreover, by partly substituting iodide with bromide, we achieve bright deep-red perovskite LEDs with an emission wavelength of 691 nm and an operational half-lifetime of 50.3 h at 100 mA cm–2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the switchable interfacial deprotonation reactions.
Fig. 2: Stable GuaI–CsPbI3 films enabled by switchable interfacial deprotonation reactions.
Fig. 3: PeLED based on GuaI–CsPbI3 films.
Fig. 4: Schematic of switchable interfacial deprotonation reactions based on ZnO with different basicity and ammonium cations with different acidities.
Fig. 5: PeLEDs based on mixed-halide perovskites.

Similar content being viewed by others

Data availability

Data supporting the findings in the present work are available in the Article and the Supplementary Information. Any additional information can be obtained from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Smith, A. M., Mancini, M. C. & Nie, S. Second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).

    Article  ADS  Google Scholar 

  2. Silverå Ejneby, M. et al. Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor. Nat. Biomed. Eng. 6, 741–753 (2022).

    Article  Google Scholar 

  3. Sipos, L. et al. Horticultural lighting system optimalization: a review. Sci. Hortic. 273, 109631 (2020).

    Article  Google Scholar 

  4. Shinhmar, H., Hogg, C., Neveu, M. & Jeffery, G. Weeklong improved colour contrasts sensitivity after single 670 nm exposures associated with enhanced mitochondrial function. Sci. Rep. 11, 22872 (2021).

    Article  ADS  Google Scholar 

  5. Ren, A. et al. Emerging light-emitting diodes for next-generation data communications. Nat. Electron. 4, 559–572 (2021).

    Article  Google Scholar 

  6. Sun, L. et al. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nat. Nanotechnol. 7, 369–373 (2012).

    Article  ADS  Google Scholar 

  7. Niu, Q., Rohloff, R., Wetzelaer, G.-J. A. H., Blom, P. W. M. & Crăciun, N. I. Hole trap formation in polymer light-emitting diodes under current stress. Nat. Mater. 17, 557–562 (2018).

    Article  ADS  Google Scholar 

  8. Keum, C. et al. A substrateless, flexible, and water-resistant organic light-emitting diode. Nat. Commun. 11, 6250 (2020).

    Article  ADS  Google Scholar 

  9. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article  ADS  Google Scholar 

  10. Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article  ADS  Google Scholar 

  11. Shen, H. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photon. 13, 192–197 (2019).

    Article  ADS  Google Scholar 

  12. Deng, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon. 16, 505–511 (2022).

    Article  ADS  Google Scholar 

  13. Jeong, B. et al. All-inorganic CsPbI3 perovskite phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes. Adv. Funct. Mater. 28, 1706401 (2018).

    Article  Google Scholar 

  14. Han, B. et al. Stable, efficient red perovskite light-emitting diodes by (α, δ)-CsPbI3 phase engineering. Adv. Funct. Mater. 28, 1804285 (2018).

    Article  Google Scholar 

  15. Yi, C. et al. Intermediate-phase-assisted low-temperature formation of γ-CsPbI3 films for high-efficiency deep-red light-emitting devices. Nat. Commun. 11, 4736 (2020).

    Article  ADS  Google Scholar 

  16. Liu, X.-K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).

    Article  ADS  Google Scholar 

  17. Zhang, Q. et al. α-BaF2 nanoparticle substrate-enabled γ-CsPbI3 heteroepitaxial growth for efficient and bright deep-red light-emitting diodes. J. Am. Chem. Soc. 144, 8162–8170 (2022).

    Article  Google Scholar 

  18. Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12, 681–687 (2018).

    Article  ADS  Google Scholar 

  19. Chen, D. et al. Amino acid-passivated pure red CsPbI3 quantum dot LEDs. ACS Energy Lett. 8, 410–416 (2023).

    Article  Google Scholar 

  20. Chang, J. et al. Enhanced performance of red perovskite light-emitting diodes through the dimensional tailoring of perovskite multiple quantum wells. J. Phys. Chem. Lett. 9, 881–886 (2018).

    Article  Google Scholar 

  21. He, Z. et al. High-efficiency red light-emitting diodes based on multiple quantum wells of phenylbutylammonium-cesium lead iodide perovskites. ACS Photon. 6, 587–594 (2019).

    Article  Google Scholar 

  22. Jiang, J. et al. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations. Adv. Mater. 34, 2204460 (2022).

    Article  Google Scholar 

  23. Miao, Y. et al. Deep-red perovskite light-emitting diodes based on one-step-formed γ-CsPbI3 cuboid crystallites. Adv. Mater. 33, 2105699 (2021).

    Article  Google Scholar 

  24. Yuan, Z., Bai, S., Yan, Z., Liu, J.-M. & Gao, F. Room-temperature film formation of metal halide perovskites on n-type metal oxides: the catalysis of ZnO on perovskite crystallization. Chem. Commun. 54, 6887–6890 (2018).

    Article  Google Scholar 

  25. Yuan, Z. et al. Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nat. Commun. 10, 2818 (2019).

    Article  ADS  Google Scholar 

  26. Zeng, J. et al. ZnO-based electron-transporting layers for perovskite light-emitting diodes: controlling the interfacial reactions. J. Phys. Chem. Lett. 13, 694–703 (2022).

    Article  Google Scholar 

  27. Meyers, S. T. et al. Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs. J. Am. Chem. Soc. 130, 17603–17609 (2008).

    Article  Google Scholar 

  28. Jun, T., Jung, Y., Song, K. & Moon, J. Influences of pH and ligand type on the performance of inorganic aqueous precursor-derived ZnO thin film transistors. ACS Appl. Mater. Interfaces 3, 774–781 (2011).

    Article  Google Scholar 

  29. Morimoto, T., Yanai, H. & Nagao, M. Infrared spectra of ammonia adsorbed on zinc oxide. J. Phys. Chem. 80, 471–475 (1976).

    Article  Google Scholar 

  30. Wang, Y. et al. Basicity of potassium-salt modified hydrotalcite studied by 1H MAS NMR using pyrrole as a probe molecule. Micropor. Mesopor. Mat. 77, 139–145 (2005).

    Article  Google Scholar 

  31. Yi, X. et al. An NMR scale for measuring the base strength of solid catalysts with pyrrole probe: a combined solid-state NMR experiment and theoretical calculation study. J. Phys. Chem. C 121, 3887–3895 (2017).

    Article  Google Scholar 

  32. Nazarenko, O. et al. Luminescent and photoconductive layered lead halide perovskite compounds comprising mixtures of cesium and guanidinium cations. Inorg. Chem. 56, 11552–11564 (2017).

    Article  Google Scholar 

  33. Jodlowski, A. D. et al. Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nat. Energy 2, 972–979 (2017).

    Article  ADS  Google Scholar 

  34. Zhang, F. et al. Efficient blue perovskite light-emitting diodes boosted by 2D/3D energy cascade channels. Adv. Funct. Mater. 30, 2001732 (2020).

    Article  Google Scholar 

  35. Ling, X. et al. Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 32, 2001906 (2020).

    Article  Google Scholar 

  36. Eperon, G. E. et al. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015).

    Article  Google Scholar 

  37. Straus, D. B., Guo, S. & Cava, R. J. Kinetically stable single crystals of perovskite-phase CsPbI3. J. Am. Chem. Soc. 141, 11435–11439 (2019).

    Article  Google Scholar 

  38. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  ADS  Google Scholar 

  39. Li, N. et al. Stabilizing perovskite light-emitting diodes by incorporation of binary alkali cations. Adv. Mater. 32, 1907786 (2020).

    Article  Google Scholar 

  40. Jia, Y.-H. et al. Role of excess FAI in formation of high-efficiency FAPbI3-based light-emitting diodes. Adv. Funct. Mater. 30, 1906875 (2020).

    Article  Google Scholar 

  41. Elkhouly, K. et al. Operationally stable perovskite light emitting diodes with high radiance. Adv. Opt. Mater. 9, 2100586 (2021).

    Article  Google Scholar 

  42. Guo, Y. et al. Phenylalkylammonium passivation enables perovskite light emitting diodes with record high-radiance operational lifetime: the chain length matters. Nat. Commun. 12, 644 (2021).

    Article  ADS  Google Scholar 

  43. Lin, H. et al. Single-phase alkylammonium cesium lead iodide quasi-2D perovskites for color-tunable and spectrum-stable red LEDs. Nanoscale 11, 16907–16918 (2019).

    Article  Google Scholar 

  44. Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).

    Article  ADS  Google Scholar 

  45. Yang, J., Siempelkamp, B. D., Mosconi, E., De Angelis, F. & Kelly, T. L. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem. Mater. 27, 4229–4236 (2015).

    Article  Google Scholar 

  46. Schutt, K. et al. Overcoming zinc oxide interface instability with a methylammonium-free perovskite for high-performance solar cells. Adv. Funct. Mater. 29, 1900466 (2019).

    Article  Google Scholar 

  47. Lee, S.-H. et al. Acid dissociation constant: a criterion for selecting passivation agents in perovskite solar cells. ACS Energy Lett. 6, 1612–1621 (2021).

    Article  Google Scholar 

  48. Wang, J. et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv. Mater. 27, 2311–2316 (2015).

    Article  Google Scholar 

  49. Raczyńska, E. D. et al. Consequences of proton transfer in guanidine. J. Phys. Org. Chem. 16, 91–106 (2003).

    Article  Google Scholar 

  50. Thangthong, A. et al. Multi-triphenylamine-substituted bis(thiophenyl)benzothiadiazoles as highly efficient solution-processed non-doped red light-emitters for OLEDs. J. Mater. Chem. C 3, 3081–3086 (2015).

    Article  Google Scholar 

  51. Lin, Q. et al. High-efficiency deep-red quantum-dot light-emitting diodes with type-II CdSe/CdTe core/shell quantum dots as emissive layers. J. Mater. Chem. C 4, 7223–7229 (2016).

    Article  ADS  Google Scholar 

  52. Liu, T. et al. Naphthothiadiazole-based near-infrared emitter with a photoluminescence quantum yield of 60% in neat film and external quantum efficiencies of up to 3.9% in nondoped OLEDs. Adv. Funct. Mater. 27, 1606384 (2017).

    Article  Google Scholar 

  53. Sim, K. et al. Performance boosting strategy for perovskite light-emitting diodes. Appl. Phys. Rev. 6, 031402 (2019).

    Article  ADS  Google Scholar 

  54. Lu, M. et al. Surface ligand engineering-assisted CsPbI3 quantum dots enable bright and efficient red light-emitting diodes with a top-emitting structure. Chem. Eng. J. 404, 126563 (2021).

    Article  Google Scholar 

  55. Liu, P. et al. Quasi-2D CsPbBrxI3−x composite thin films for efficient and stable red perovskite light-emitting diodes. Adv. Opt. Mater. 9, 2101419 (2021).

    Article  Google Scholar 

  56. Li, N. et al. Diammonium-mediated perovskite film formation for high-luminescence red perovskite light-emitting diodes. Adv. Mater. 34, 2202042 (2022).

    Article  Google Scholar 

  57. Hu, S. et al. High-performance deep red colloidal quantum well light-emitting diodes enabled by the understanding of charge dynamics. ACS Nano 16, 10840–10851 (2022).

    Article  Google Scholar 

  58. Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).

    Article  ADS  Google Scholar 

  59. Song, Y.-H. et al. Planar defect-free pure red perovskite light-emitting diodes via metastable phase crystallization. Sci. Adv. 8, eabq2321 (2022).

    Article  ADS  Google Scholar 

  60. Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photon. 13, 760–764 (2019).

    Article  ADS  Google Scholar 

  61. Yin, J. et al. Molecular identification and quantification of defect sites in metal-organic frameworks with NMR probe molecules. Nat. Commun. 13, 5112 (2022).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Center of Electron Microscopy, Zhejiang University, for providing the transmission electron microscopy characterization, focused-ion-beam micromachining and energy-dispersive X-ray spectroscopy analyses that greatly assisted the research. We thank X. Zhu from the State Key Laboratory of Silicon and Advanced Semiconductor Materials for the help on XPS characterizations. We thank D. Di and B. Zhao for the helpful discussion on optical measurements. We thank Y. Deng and D. Chen for supporting the research in the initial stage. We thank L. Chen for assistance in drawing the schemes and the inspiring discussion on the research. We thank H. Wang and Y. Qi for the inspiring discussion on the research. We thank Y. Hao for the technical support for the research. This work was financially supported by the National Key Research and Development Program of China (2022YFA1204800) (to Y.L.), National Natural Science Foundation of China (21975220) (to Y.J.), the China National Postdoctoral Program for Innovative Talents (BX20200288) (to Y.L.) and the China Postdoctoral Science Foundation (2021M70278 and 2023M733019) (to Y.L.).

Author information

Authors and Affiliations

Authors

Contributions

Y.J., Y.L. and J.Z. conceived the idea and designed the experiments. Y.J., Z.Y. and Y.L. supervised the work. J.Z. and X.S. carried out the device fabrication and characterizations. J.Z., X.S., W.J., K.N. and J.L. conducted the optical characterizations. J.Z., S.H., X.Z. and X.S. carried out the XPS and atomic force microscopy experiments. G.S. conducted the solid-state nuclear magnetic resonance spectroscopy characterizations. T.S., X.S. and Y.L. conducted the STEM characterizations. Y.L., J.Z. and Y.J. wrote the first draft of the manuscript. H.H. and Z.Y. participated in the data analysis. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yang Liu, Zhizhen Ye or Yizheng Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–50 and Table 1.

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Sun, X., Liu, Y. et al. Switchable interfacial reaction enables bright and stable deep-red perovskite light-emitting diodes. Nat. Photon. 18, 325–333 (2024). https://doi.org/10.1038/s41566-023-01369-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01369-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing