Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface-defect-passivation-enabled near-unity charge collection efficiency in bromide-based perovskite gamma-ray spectrum devices

Abstract

Hybrid lead halide perovskites have superior charge transport properties to all-inorganic perovskites, but high-resolution spectroscopic radiation detectors have not been realized. Here we show that surface deep traps severely limit charge collection in formamidinium lead bromide (FAPbBr3) single-crystal devices, despite having a good bulk transport property. Three types of defect on the crystal surface, namely, FA vacancies, uncoordinated lead and Pb–Pb dimers caused by bromide loss, are found to form deep traps, resulting in non-radiative charge recombinations at the metal/perovskite interface. By tailoring the passivation functional groups, we find that ammonium bromide can passivate all these three deep traps on FAPbBr3 surfaces, improving the charge collection efficiency to near unity. The comparable bulk and surface recombination lifetimes indicate that all the surface defects are effectively passivated. Surface passivation also reduces the dark current by 10 times and decreases the dark counts by ~60 times. The energy resolution of the 137Cs spectra acquired using the FAPbBr3 detectors is improved from 5.7% to 1.7% when all the surface defects are passivated without changing the bulk properties, which is the best among solution-grown semiconductor detectors. Surface passivation is stable for more than six months, and FAPbBr3 spectroscopic detectors can operate at unprecedented high temperatures of more than 130 °C.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Surface defects of FAPbBr3 crystals and passivators.
Fig. 2: Crystal surface trap density with different surface passivations.
Fig. 3: Theoretical calculation of the DOS of FAPbBr3 crystal surface with FABr termination.
Fig. 4: Passivation-layer-dependent device CCE.
Fig. 5: Performance of FAPbBr3 single-crystal devices.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the Article and its Supplementary Information.

References

  1. Richtsmeier, D., Guliyev, E., Iniewski, K. & Bazalova-Carter, M. Contaminant detection in non-destructive testing using a CZT photon-counting detector. J. Instrum. 16, P01011 (2021).

    CAS  Google Scholar 

  2. Iniewski, K. CZT detector technology for medical imaging. J. Instrum. 9, C11001 (2014).

    Google Scholar 

  3. Johns, P. M. & Nino, J. C. Room temperature semiconductor detectors for nuclear security. J. Appl. Phys. 126, 040902 (2019).

    ADS  Google Scholar 

  4. McGregor, D. S. Materials for gamma-ray spectrometers: inorganic scintillators. Annu. Rev. Mater. Res. 48, 245–277 (2018).

    CAS  Google Scholar 

  5. Devanathan, R., Corrales, L. R., Gao, F. & Weber, W. J. Signal variance in gamma-ray detectors-a review. Nucl. Instrum. Methods Phys. Res. A 565, 637–649 (2006).

    ADS  CAS  Google Scholar 

  6. Owens, A. Semiconductor materials and radiation detection. J. Synchrotron Radiat. 13, 143–150 (2006).

    CAS  PubMed  Google Scholar 

  7. Chen, H. et al. Development of large-volume high-performance monolithic CZT radiation detector. in Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XX Vol. 10762 (eds Payne, S. A. et al.) 107620N (SPIE, 2018).

  8. Kozlov, V., Kemell, M., Vehkamäki, M. & Leskelä, M. Degradation effects in TlBr single crystals under prolonged bias voltage. Nucl. Instrum. Methods Phys. Res. A 576, 10–14 (2007).

    ADS  CAS  Google Scholar 

  9. Baciak, J. E. & He, Z. Comparison of 5 and 10 mm thick HgI2 pixelated γ-ray spectrometers. Nucl. Instrum. Methods Phys. Res. A 505, 191–194 (2003).

    ADS  CAS  Google Scholar 

  10. Luke, P. N. & Amman, M. Room-temperature replacement for Ge detectors—are we there yet? IEEE Trans. Nucl. Sci. 54, 834–842 (2007).

    ADS  CAS  Google Scholar 

  11. Dong, Q. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    ADS  CAS  PubMed  Google Scholar 

  12. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    ADS  Google Scholar 

  13. Wei, H. et al. Dopant compensation in alloyed CH3NH3PbBr3−xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16, 826–833 (2017).

    ADS  CAS  PubMed  Google Scholar 

  14. Feng, Y. et al. Low defects density CsPbBr3 single crystals grown by an additive assisted method for gamma-ray detection. J. Mater. Chem. C 8, 11360–11368 (2020).

    CAS  Google Scholar 

  15. He, Y. et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 9, 1609 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  16. He, Y. et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photon. 15, 36–42 (2021).

    ADS  CAS  Google Scholar 

  17. He, Y., Hadar, I. & Kanatzidis, M. G. Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photon. 16, 14–26 (2022).

    ADS  CAS  Google Scholar 

  18. Wei, H. & Huang, J. Halide lead perovskites for ionizing radiation detection. Nat. Commun. 10, 1066 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  19. Nazarenko, O., Yakunin, S., Morad, V., Cherniukh, I. & Kovalenko, M. V. Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Mater. 9, e373 (2017).

    CAS  Google Scholar 

  20. Yakunin, S. et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photon. 10, 585–589 (2016).

    ADS  CAS  Google Scholar 

  21. Zaffalon, M. L. et al. Extreme γ-ray radiation hardness and high scintillation yield in perovskite nanocrystals. Nat. Photon. 16, 860–868 (2022).

    ADS  CAS  Google Scholar 

  22. Zhu, Y. & He, Z. Performance of larger-volume 40 × 40 × 10- and 40 × 40 × 15-mm3 CdZnTe detectors. IEEE Trans. Nucl. Sci. 68, 250–255 (2021).

    ADS  CAS  Google Scholar 

  23. Zhao, L. et al. High yield growth of FACsPbBr3 single crystals with low defect density from mixed solvents for gamma-ray spectroscopy. Nat. Photon. 17, 315–323 (2022).

  24. Liu, X. et al. Improved crystallization quality of FAPbBr3 single crystals by a seeded solution method. ACS Appl. Mater. Interfaces 14, 51130–51136 (2022).

    CAS  PubMed  Google Scholar 

  25. Liu, X. et al. Solution-grown formamidinium hybrid perovskite (FAPbBr3) single crystals for α-particle and γ-ray detection at room temperature. ACS Appl. Mater. Interfaces 13, 15383–15390 (2021).

    CAS  PubMed  Google Scholar 

  26. Pan, L., Feng, Y., Kandlakunta, P., Huang, J. & Cao, L. R. Performance of perovskite CsPbBr3 single crystal detector for gamma-ray detection. IEEE Trans. Nucl. Sci. 67, 443–449 (2020).

    ADS  CAS  Google Scholar 

  27. Ni, Z. et al. High grain boundary recombination velocity in polycrystalline metal halide perovskites. Sci. Adv. 8, eabq8345 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10, 333–339 (2016).

    ADS  CAS  Google Scholar 

  29. Rodà, C. et al. Understanding thermal and a-thermal trapping processes in lead halide perovskites towards effective radiation detection schemes. Adv. Funct. Mater. 31, 2104879 (2021).

    Google Scholar 

  30. Zhang, T. et al. A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br1–xClx)3. Chem. Commun. 51, 7820–7823 (2015).

    CAS  Google Scholar 

  31. Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015).

    ADS  PubMed  Google Scholar 

  32. Kadro, J. M., Nonomura, K., Gachet, D., Grätzel, M. & Hagfeldt, A. Facile route to freestanding CH3NH3PbI3 crystals using inverse solubility. Sci. Rep. 5, 11654 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  33. Fang, H.-H. et al. Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases. Sci. Adv. 2, e1600534 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  34. Motti, S. G. et al. Controlling competing photochemical reactions stabilizes perovskite solar cells. Nat. Photon. 13, 532–539 (2019).

    ADS  CAS  Google Scholar 

  35. Wang, J. & Yin, W.-J. Revisiting the iodine vacancy surface defects to rationalize passivation strategies in perovskite solar cells. J. Phys. Chem. Lett. 13, 6694–6700 (2022).

    CAS  PubMed  Google Scholar 

  36. Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    CAS  PubMed  Google Scholar 

  37. Feng, X. et al. Restricting the formation of Pb–Pb dimer via surface Pb site passivation for enhancing the light stability of perovskite. Small 18, 2201831 (2022).

    CAS  Google Scholar 

  38. Wu, G. et al. Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Adv. Mater. 34, 2105635 (2022).

    CAS  Google Scholar 

  39. Mao, L. et al. Hybrid Dion–Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140, 3775–3783 (2018).

    CAS  PubMed  Google Scholar 

  40. Ni, Z. et al. Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination. Nat. Energy 7, 65–73 (2022).

    ADS  CAS  Google Scholar 

  41. Guo, F. et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 7, 798–802 (2012).

    ADS  CAS  PubMed  Google Scholar 

  42. Nemirovsky, Y., Asa, G., Jakobson, C. G., Ruzin, A. & Gorelik, J. Dark noise currents and energy resolution of CdZnTe spectrometers. J. Electron. Mater. 27, 800–806 (1998).

    ADS  CAS  Google Scholar 

  43. Fernández, J. E., Scot, V. & Sabbatucci, L. A modeling tool for detector resolution and incomplete charge collection. X-Ray Spectrom. 44, 177–182 (2015).

    ADS  Google Scholar 

  44. Prías-Barragán, J. J. et al. Band gap energy determination by photoacoustic absorption and optical analysis of Cd1−xZnxTe for low zinc concentrations. J. Cryst. Growth 286, 279–283 (2006).

    ADS  Google Scholar 

  45. Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).

    ADS  CAS  Google Scholar 

  46. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    ADS  CAS  Google Scholar 

  47. Lin, Y. et al. Revealing defective nanostructured surfaces and their impact on the intrinsic stability of hybrid perovskites. Energy Environ. Sci. 14, 1563–1572 (2021).

    CAS  Google Scholar 

  48. Nayak, P. K. et al. Mechanism for rapid growth of organic–inorganic halide perovskite crystals. Nat. Commun. 7, 13303 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    ADS  PubMed  Google Scholar 

  50. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  CAS  PubMed  Google Scholar 

  51. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    ADS  PubMed  Google Scholar 

  52. Krack, M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 114, 145–152 (2005).

    CAS  Google Scholar 

  53. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    ADS  CAS  Google Scholar 

  54. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS  PubMed  Google Scholar 

  55. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    ADS  PubMed  Google Scholar 

  56. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  57. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS  CAS  Google Scholar 

  58. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS  Google Scholar 

Download references

Acknowledgements

This work is mainly supported by the Defense Threat Reduction Agency under award no. HDTRA1-20-2-0002. The synthesis of 4AMPBr2, 2PPL measurement and computation of defects are supported by the Center for Hybrid Organic Inorganic Semiconductors for Energy (CHOISE), an Energy Frontier Research Center funded by the US Department of Energy, Office of Basic Energy Sciences, Office of Science. Structural relaxations were performed using computational resources sponsored by the Department of Energy, Office of Energy Efficiency and Renewable Energy, located at the National Renewable Energy Laboratory. DOS calculations used resources of the National Energy Research Scientific Computing Center, a Department of Energy, Office of Science User Facility, supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231 using NERSC award BES-ERCAP0023945.

Author information

Authors and Affiliations

Authors

Contributions

J.H. conceived and supervised the project. Z.S. synthesized 4AMPBr2. L.Z. synthesized the crystals and performed the surface treatments. L.Z. fabricated the devices and measured the γ-ray spectral performance. Z.S. and Z.N. measured the PL and TRPL data. Y.Z. contributed to the TAS and CCE measurements. X.W., Y.X. and Y.Y. performed the computation of defects and passivation. Y.D., O.R. and M.C.B. conducted the 2PPL test. L.Z. and J.H. wrote the paper, and all authors reviewed the paper.

Corresponding authors

Correspondence to Yanfa Yan or Jinsong Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Sergio Brovelli, Omar Mohammed and Makhsud Saidaminov, for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26 and Texts 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Shi, Z., Zhou, Y. et al. Surface-defect-passivation-enabled near-unity charge collection efficiency in bromide-based perovskite gamma-ray spectrum devices. Nat. Photon. 18, 250–257 (2024). https://doi.org/10.1038/s41566-023-01356-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01356-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing