Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrically assisted amplified spontaneous emission in perovskite light-emitting diodes

Abstract

Metal halide perovskites have emerged as promising gain materials for thin-film laser diodes. However, achieving electrically excited amplified spontaneous emission (ASE) in perovskite light-emitting diodes (PeLEDs), a pre-condition for perovskite laser diodes, is hindered by the conflicting requirements of high conductivity and high net modal gain of the device stack. Here we develop a transparent PeLED architecture that combines low optical losses with excellent current-injection properties. Using 2.3 ns optical pulses at 77 K, we achieve ASE with a threshold of 9.1 μJ cm−2. Upon submicrosecond electrical excitation at 77 K of the same device, we achieve current densities above 3 kA cm−2 with irradiance values above 40 W cm−2. Notably, co-pumping the PeLED with optical pulses that are synchronized with the leading edge of an intense electrical pulse results in a reduction of the ASE threshold by 1.2 ± 0.2 μJ cm−2, showing that electrically injected carriers contribute to optical gain. Furthermore, to assess the feasibility of a perovskite semiconductor optical amplifier, we probe the PeLED with 1-μs-long optical excitation and observe continuous-wave ASE at a threshold of 3.8 kW cm−2. Finally, we show that such intense electrical pulses generate electroluminescence brightness levels close to half the irradiance produced by continuous-wave optical pumping at the ASE threshold. This work shows that perovskite semiconductor optical amplifiers and injection lasers are within reach using this type of transparent PeLED.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural and optoelectronic properties of transparent PeLEDs.
Fig. 2: Co-pumping dynamics under sub-µs electrical and 2.3 ns optical biases.
Fig. 3: Stand-alone CW optical and CW photo-electrical co-excitation.
Fig. 4: Irradiance level comparison under 200 ns electrical and 500 ns CW optical biases in the transparent PeLED.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Zhang, T. et al. Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377, 495–501 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425–1430 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Wang, K. et al. Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes. Nat. Commun. 14, 397 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photonics 16, 637–643 (2022).

    Article  ADS  CAS  Google Scholar 

  7. Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Liu, Z. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33, 2103268 (2021).

    Article  CAS  Google Scholar 

  9. Bao, C. et al. Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nat. Electron. 3, 156–164 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ollearo, R. et al. Ultralow dark current in near-infrared perovskite photodiodes by reducing charge injection and interfacial charge generation. Nat. Commun. 12, 7277 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lei, L., Dong, Q., Gundogdu, K. & So, F. Metal halide perovskites for laser applications. Adv. Funct. Mater. 31, 2010144 (2021).

    Article  CAS  Google Scholar 

  12. Tatarinov, D. A. et al. High-quality CsPbBr3 perovskite films with modal gain above 10 000 cm−1 at room temperature. Adv. Opt. Mater. 11, 2202407 (2023).

    Article  CAS  Google Scholar 

  13. Liu, Y. et al. Ligand assisted growth of perovskite single crystals with low defect density. Nat. Commun. 12, 1686 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao, Y. et al. High-performance perovskite light-emitting diodes enabled by passivating defect and constructing dual energy-transfer pathway through functional perovskite nanocrystals. Adv. Mater. 34, 2207445 (2022).

    Article  CAS  Google Scholar 

  15. Braly, I. L. et al. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nat. Photonics 12, 355–361 (2018).

    Article  ADS  CAS  Google Scholar 

  16. Pourdavoud, N. et al. Room-temperature stimulated emission and lasing in recrystallized cesium lead bromide perovskite thin films. Adv. Mater. 31, 1903717 (2019).

    Article  Google Scholar 

  17. Huang, C. Y. et al. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics 4, 2281–2289 (2017).

    Article  CAS  Google Scholar 

  18. Kim, H. et al. Optically pumped lasing from hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 8, 1901297 (2019).

    Article  Google Scholar 

  19. Cho, C. et al. Electrical pumping of perovskite diodes: toward stimulated emission. Adv. Sci. 8, 2101663 (2021).

    Article  CAS  Google Scholar 

  20. Jia, Y., Kerner, R. A., Grede, A. J., Rand, B. P. & Giebink, N. C. Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nat. Photonics 11, 784–788 (2017).

    Article  ADS  CAS  Google Scholar 

  21. Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Allegro, I. et al. Distributed feedback lasers by thermal nanoimprint of perovskites using gelatin gratings. ACS Appl. Mater. Interfaces 15, 8436–8445 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cegielski, P. J. et al. Monolithically integrated perovskite semiconductor lasers on silicon photonic chips by scalable top-down fabrication. Nano Lett. 18, 6915–6923 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Roh, K. et al. Widely tunable, room temperature, single-mode lasing operation from mixed-halide perovskite thin films. ACS Photonics 6, 3331–3337 (2019).

    Article  CAS  Google Scholar 

  25. Goldberg, I. et al. Multimode lasing in all-solution-processed UV-nanoimprinted distributed feedback MAPbI3 perovskite waveguides. ACS Photonics 10, 1591–1600 (2023).

    Article  CAS  Google Scholar 

  26. Kim, H. et al. Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun. 9, 4893 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, L. et al. Thermal management enables bright and stable perovskite light-emitting diodes. Adv. Mater. 32, 2000752 (2020).

    Article  CAS  Google Scholar 

  28. Zhao, L. et al. Nanosecond-pulsed perovskite light-emitting diodes at high current density. Adv. Mater. 33, 2104867 (2021).

    Article  CAS  Google Scholar 

  29. Elkhouly, K. et al. Intense electrical pulsing of perovskite light emitting diodes under cryogenic conditions. Adv. Opt. Mater. 10, 2200024 (2022).

    Article  CAS  Google Scholar 

  30. Zou, C., Liu, Y., Ginger, D. S. & Lin, L. Y. Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS Nano 14, 6076–6086 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, L. et al. Thermal properties of polymer hole-transport layers influence the efficiency roll-off and stability of perovskite light-emitting diodes. Nano Lett. 23, 4785–4792 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Ahn, N. et al. Optically excited lasing in a cavity-based, high-current-density quantum dot electroluminescent device. Adv. Mater. 35, 2206613 (2023).

    Article  CAS  Google Scholar 

  33. Slowik, I. et al. Novel organic light-emitting diode design for future lasing applications. Org. Electron. 48, 132–137 (2017).

    Article  CAS  Google Scholar 

  34. Lee, J. H., Ke, T. H., Genoe, J., Heremans, P. & Rolin, C. Overlapping-gate organic light-emitting transistors. Adv. Electron. Mater. 5, 1800437 (2019).

    Article  Google Scholar 

  35. Schols, S. et al. An organic light-emitting diode with field-effect electron transport. Adv. Funct. Mater. 18, 136–144 (2008).

    Article  ADS  CAS  Google Scholar 

  36. Goldberg, I. et al. Active area dependence of optoelectronic characteristics of perovskite LEDs. J. Mater. Chem. C 9, 12661–12670 (2021).

    Article  CAS  Google Scholar 

  37. Elkhouly, K. et al. Operationally stable perovskite light emitting diodes with high radiance. Adv. Opt. Mater. 9, 2100586 (2021).

    Article  CAS  Google Scholar 

  38. He, Y. et al. Perovskite light-emitting diodes with near unit internal quantum efficiency at low temperatures. Adv. Mater. 33, 2006302 (2021).

    Article  CAS  Google Scholar 

  39. Jia, Y., Kerner, R. A., Grede, A. J., Rand, B. P. & Giebink, N. C. Factors that limit continuous-wave lasing in hybrid perovskite semiconductors. Adv. Opt. Mater. 8, 1901514 (2020).

    Article  CAS  Google Scholar 

  40. Brenner, P. et al. Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites. Nat. Commun. 10, 988 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Ahn, N. et al. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature 617, 79–85 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peters, G. I. & Allen, L. Amplified spontaneous emission I. The threshold condition. J. Phys. A Gen. Phys. 4, 238–243 (1971).

    Article  ADS  CAS  Google Scholar 

  43. Frolov, S. V., Vardeny, Z. V. & Yoshino, K. Cooperative and stimulated emission in poly(p-phenylene-vinylene) thin films and solutions. Phys. Rev. B 57, 9141 (1998).

    Article  ADS  CAS  Google Scholar 

  44. Bourdakos, K. N., Cury, L. A. & Monkman, A. P. The dependence of the amplified spontaneous emission on the waveguide excitation length for high quantum efficiency conjugated polymers. Org. Electron. 12, 1142–1145 (2011).

    Article  CAS  Google Scholar 

  45. Xie, M. et al. High-efficiency pure-red perovskite quantum-dot light-emitting diodes. Nano Lett. 22, 8266–8273 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Whitworth, G. L., Dalmases, M., Taghipour, N. & Konstantatos, G. Solution-processed PbS quantum dot infrared laser with room-temperature tunable emission in the optical telecommunications window. Nat. Photonics 15, 738–742 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, X. et al. Minimizing the interface-driven losses in inverted perovskite solar cells and modules. ACS Energy Lett. 8, 2532–2542 (2023).

    Article  CAS  Google Scholar 

  48. Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The project leading to these results has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 835133).

Author information

Authors and Affiliations

Authors

Contributions

K.E. conceived the PeLED stack for operation at high current density, designed the experiments and conducted the photo-electrical characterization. I.G. conceived, designed and fabricated the double-ITO structure, performed optical modelling and optimized the stack design for low optical thresholds. X.Z. conceived and fabricated the device stack and functional layers. N.A. and S.H. aided in the optical design of the stack and in performing optical characterization and modal loss modelling. G.C. acquired the SEM image. W.Q. aided in conceiving the PeLED stack, supervision and design of the experiments. C.R., R.G., J.G. and P.H. supervised this work. K.E. and I.G. wrote the first draught of the manuscript. All authors revised and approved the final version of the manuscript.

Corresponding authors

Correspondence to Robert Gehlhaar or Paul Heremans.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Optical characterization of PeLED stacks with 2.3 ns Iopt,ns pump source.

PL output from a PeLED stack with a diameter () of 50 μm at (a) 77 K and (b) 291 K. PL output from a contact-free PeLED stack at (c) 77 K and (d) 291 K.

Source data

Extended Data Fig. 2 Optical characterization of PeLED stacks with Iopt,ns pump source.

a-c, PL output from the contacted PeLED stacks with different active areas at 77 K. d, Corresponding light output intensity as a function of input laser fluence (Iopt,ns).

Source data

Extended Data Fig. 3 PeLED optical constants and absorption/emission modeling.

a, Refractive indices and b, extinction coefficients of other PeLED functional layers. c, Layer stack with a broad isotropic dipole distribution in the perovskite layer (PVK) used for the multi-physics modeling. The perovskite reabsorption was set to 0, thereby excluding photon recycling effects. Me-4PACz /AlxOy HTL was not factored in due to negligible thickness. d, Simulated EL intensity as a function of viewing angle. e, Maximum simulated EQE from each device facet for IQE of 100%. f, Simulated absorption of the perovskite gain layer of the contacted PeLED as a function of excitation wavelength for the case of sapphire/top ITO light incidence. g, Simulated absorption of the perovskite gain layer as a function of excitation wavelength for the contacted and electrode-free PeLED stacks with light impinging from the sapphire side.

Source data

Extended Data Fig. 4 EL spectra from a ø 50 µm device recorded through the substrate at 77 K.

a, As-recorded. b, Normalized.

Source data

Extended Data Fig. 5 Photo-electrical co-excitation of contacted PeLED stacks at 77 K.

a-f, Standalone optical excitation with variable Iopt,ns (black solid lines), photo-electrical spectra at variable Iopt,ns and fixed Vp (dashed), and joint spectra adjusted by subtracting the reference EL signal (coloured solid lines). The Vp (J = 3.5 kA cm−2) was fixed across these measurements, producing the reference EL signal shown in (a) in the absence of optical excitation.

Source data

Extended Data Fig. 6 Deconvolution of PLns signals under standalone 2.3 ns optical bias and photo-electric co-excitation at the onset of the electrical pulse into two (without Vp) or three (with Vp) Gaussian contributions.

a-b, Exemplary fits at variable Iopt,ns without electrical bias. c-d, Exemplary fits at variable Iopt,ns with electrical bias. e, As-extracted, and f, right-shifted by 1.2 µJ cm−2 Gaussian amplitudes with and without Vp. For SE (PL) and ASE fits, both central energy (wavelength) and standard deviation are fixed. All the parameters of SE (EL) fit are fixed. SE (EL) signal was multiplied by a factor of 0.23 to account for EL contribution to the total signal and is displayed as SE (EL)*. The PL laser pulse duration is 2.3 ns (Supplementary Fig. 7a), whereas the EL + PL signal integration time was 10 ns. The horizontal error bars represent experimental input energy uncertainty, whereas vertical error bars represent one standard deviation for the fitted parameter.

Source data

Extended Data Fig. 7 Deconvolution of PLcw signals under standalone 1 µs CW optical bias and under photo-electric co-excitation into two (without Vp) or three (with Vp) Gaussian contributions.

a-b, Exemplary fits at variable Iopt,cw without Vp. c, SE (PL) and ASE Gaussian amplitudes as a function of input laser power Iopt,cw without Vp. d-e, Exemplary fits at variable Iopt,cw with Vp. f, SE (PL), SE (EL), and ASE Gaussian amplitudes as a function of input laser power Iopt,cw with Vp. For SE (PL) fit, only central energy (wavelength) is fixed; standard deviation and amplitude vary. For ASE fit, both central energy (wavelength) and standard deviation are fixed. All the parameters of SE (EL) fit are fixed. The vertical error bars represent one standard deviation for the fitted parameter.

Source data

Extended Data Fig. 8 Transient luminescence response at a constant CW Iopt,cw pulse (15 kW cm−2) and variable Vp from 140 to 3500 A cm−2.

300 ns-long electrical pulses are applied 300 ns after the onset of the CW optical pulse.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Notes 1–4, Table 1 and Experimental methods.

Source data

Source Data Fig. 1

Raw data for experimental/simulated curves.

Source Data Fig. 2

Raw data for experimental/simulated curves.

Source Data Fig. 3

Raw data for experimental/simulated curves.

Source Data Fig. 4

Raw data for experimental/simulated curves.

Source Data Extended Data Fig. 1

Raw data for experimental/simulated curves.

Source Data Extended Data Fig. 2

Raw data for experimental/simulated curves.

Source Data Extended Data Fig. 3

Raw data for experimental/simulated curves.

Source Data Extended Data Fig. 4

Raw data for experimental/simulated curves.

Source Data Extended Data Fig. 5

Raw data for experimental/simulated curves.

Source Data Extended Data Fig. 6

Raw data for experimental/simulated curves.

Source Data Extended Data Fig. 7

Raw data for experimental/simulated curves.

Source Data Extended Data Fig. 8

Raw data for experimental/simulated curves.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkhouly, K., Goldberg, I., Zhang, X. et al. Electrically assisted amplified spontaneous emission in perovskite light-emitting diodes. Nat. Photon. 18, 132–138 (2024). https://doi.org/10.1038/s41566-023-01341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01341-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing