Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wavelength-accurate nonlinear conversion through wavenumber selectivity in photonic crystal resonators

Abstract

Integrated nonlinear wavelength converters transfer optical energy from lasers or quantum emitters to other useful colours, but chromatic dispersion limits the range of achievable wavelength shifts. Moreover, because of geometric dispersion, fabrication tolerances reduce the accuracy with which devices produce specific target wavelengths. Here we report nonlinear wavelength converters that allow output wavelengths to be controlled with high accuracy despite their operation not being contingent on dispersion engineering. In our scheme, coupling between counterpropagating waves in a photonic crystal microresonator induces a photonic bandgap that isolates (in dispersion space) specific wavenumbers for nonlinear gain. We demonstrate the wide applicability of this strategy by simulating its use in third-harmonic generation, Kerr-microcomb dispersive wave formation and four-wave mixing Bragg scattering. In experiments, we demonstrate Kerr optical parametric oscillators in which such wavenumber-selective coupling designates the signal mode. As a result, differences between the targeted and realized signal wavelengths are <0.3%. Moreover, leveraging the bandgap-protected wavenumber selectivity, we continuously tune the output frequencies by nearly 300 GHz without compromising efficiency. Our results will bring about a paradigm shift in how microresonators are designed for nonlinear optics, and they make headway on the larger problem of building wavelength-accurate light sources using integrated photonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual depictions of wavenumber-selective nonlinear wavelength conversion in Kerr photonic crystal microresonators.
Fig. 2: Simulations of nonlinear wavelength conversion in Kerr photonic crystal microresonators.
Fig. 3: Wavenumber-selective μOPOs in Kerr photonic crystal microresonators.
Fig. 4: Optical parametric oscillation using selective splitting in undulated microrings (OPOSSUM).
Fig. 5: Modelling OPOSSUM with the LLE.
Fig. 6: Exploring wavelength tunability in OPOSSUM.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding authors upon reasonable request.

Code availability

The programs used to simulate the coupled-mode and Lugiato–Lefever equations are available from the corresponding authors upon reasonable request.

References

  1. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  ADS  CAS  Google Scholar 

  2. Bothwell, T. et al. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 602, 420–424 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  4. Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

  5. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).

    Article  ADS  CAS  Google Scholar 

  7. Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

  9. Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. On-chip optical parametric oscillation into the visible: generating red, orange, yellow, and green from a near-infrared pump. Optica 7, 1417–1425 (2020).

    Article  ADS  Google Scholar 

  10. Sayson, N. L. B. et al. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators. Nat. Photon. 13, 701–706 (2019).

  11. Marty, G., Combrié, S., Raineri, F. & De Rossi, A. Photonic crystal optical parametric oscillator. Nat. Photon. 15, 53–58 (2021).

  12. Vernon, Z. et al. Scalable squeezed-light source for continuous-variable quantum sampling. Phys. Rev. Appl. 12, 064024 (2019).

    Article  ADS  CAS  Google Scholar 

  13. Dutt, A. et al. On-chip optical squeezing. Phys. Rev. Appl. 3, 044005 (2015).

    Article  ADS  Google Scholar 

  14. Kues, M. et al. Quantum optical microcombs. Nat. Photon. 13, 170–179 (2019).

  15. Lu, X. et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat. Phys. 15, 373–381 (2019).

    Article  CAS  Google Scholar 

  16. Li, Q., Davanço, M. & Srinivasan, K. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photon. 10, 406–414 (2016).

  17. Carmon, T. & Vahala, K. J. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nat. Phys. 3, 430–435 (2007).

    Article  CAS  Google Scholar 

  18. Surya, J. B., Guo, X., Zou, C.-L. & Tang, H. X. Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings. Optica 5, 103–108 (2018).

    Article  ADS  CAS  Google Scholar 

  19. Boyd, R. W. Nonlinear Optics (Academic, 2020).

  20. Yang, K. Y. et al. Broadband dispersion-engineered microresonator on a chip. Nat. Photon. 10, 316–320 (2016).

  21. Okawachi, Y. et al. Bandwidth shaping of microresonator-based frequency combs via dispersion engineering. Opt. Lett. 39, 3535–3538 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Lu, X. et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat. Photon. 13, 593–601 (2019).

  23. Yu, S.-P. et al. Tuning Kerr-soliton frequency combs to atomic resonances. Phys. Rev. Appl. 11, 044017 (2019).

    Article  ADS  CAS  Google Scholar 

  24. Briles, T. C. et al. Interlocking Kerr-microresonator frequency combs for microwave to optical synthesis. Opt. Lett. 43, 2933–2936 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Stone, J. R., Moille, G., Lu, X. & Srinivasan, K. Conversion efficiency in Kerr-microresonator optical parametric oscillators: from three modes to many modes. Phys. Rev. Appl. 17, 024038 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Y. et al. Squeezed light from a nanophotonic molecule. Nat. Commun. 12, 2233 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang, Y., Gong, Z., Liu, X. & Tang, H. X. Widely separated optical Kerr parametric oscillation in AlN microrings. Opt. Lett. 45, 1124–1127 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Urbonas, D., Balčytis, A., Vaškevičius, K., Gabalis, M. & Petruškevičius, R. Air and dielectric bands photonic crystal microringresonator for refractive index sensing. Opt. Lett. 41, 3655–3658 (2016).

    Article  ADS  PubMed  Google Scholar 

  29. Lo, S. M. et al. Photonic crystal microring resonator for label-free biosensing. Opt. Express 25, 7046–7054 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Lu, X., McClung, A. & Srinivasan, K. High-Q slow light and its localization in a photonic crystal microring. Nat. Photon. 16, 66–71 (2022).

  31. Yu, S.-P. et al. Spontaneous pulse formation in edgeless photonic crystal resonators. Nat. Photon. 15, 461–467 (2021).

  32. Lu, X., Chanana, A., Zhou, F., Davanco, M. & Srinivasan, K. Kerr optical parametric oscillation in a photonic crystal microring for accessing the infrared. Opt. Lett. 47, 3331–3334 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Black, J. A. et al. Optical-parametric oscillation in photonic-crystal ring resonators. Optica 9, 1183–1189 (2022).

    Article  ADS  CAS  Google Scholar 

  34. Lu, X., Rao, A., Moille, G., Westly, D. A. & Srinivasan, K. Universal frequency engineering tool for microcavity nonlinear optics: multiple selective mode splitting of whispering-gallery resonances. Photon. Res. 8, 1676–1686 (2020).

  35. Moille, G., Lu, X., Stone, J., Westly, D. & Srinivasan, K. Fourier synthesis dispersion engineering of photonic crystal microrings for broadband frequency combs. Commun. Phys. 6, 144 (2023).

  36. Lucas, E., Yu, S.-P., Briles, T. C., Carlson, D. R. & Papp, S. B. Tailoring microcombs with inverse-designed, meta-dispersion microresonators. Nat. Photon. 17, 943–950 (2023).

  37. Moille, G., Westly, D., Orji, N. G. & Srinivasan, K. Tailoring broadband Kerr soliton microcombs via post-fabrication tuning of the geometric dispersion. Appl. Phys. Lett. 119, 121103 (2021).

    Article  ADS  CAS  Google Scholar 

  38. Liu, J. et al. Tunable frequency matching for efficient four-wave-mixing Bragg scattering in microrings. Opt. Express 29, 36038–36047 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Perez and M. Chojnacky for providing useful feedback during the preparation of the paper. We acknowledge funding support from the the DARPA LUMOS and NIST-on-a-chip programmes.

Author information

Authors and Affiliations

Authors

Contributions

J.R.S. envisioned and performed the experiments and analysed the data. X.L. fabricated the devices, contributed experimental ideas and assisted with device design. G.M. assisted with device design and helped to analyse the data. D.W. fabricated the devices, T.R. helped to characterize the devices and K.S. analysed the data and consulted on the experiments.

Corresponding authors

Correspondence to Jordan R. Stone or Kartik Srinivasan.

Ethics declarations

Competing interests

NIST/UMD have filed patent applications, with J.R.S., K.S. and X.L. listed as the inventors. The other authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Alfredo de Rossi, Dawn Tan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stone, J.R., Lu, X., Moille, G. et al. Wavelength-accurate nonlinear conversion through wavenumber selectivity in photonic crystal resonators. Nat. Photon. 18, 192–199 (2024). https://doi.org/10.1038/s41566-023-01326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01326-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing