Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The bright prospects of optical solitons after 50 years

Abstract

The idea of temporal solitons in optical fibres as a means to compensate for the chromatic dispersion-induced temporal broadening of pulses via the intensity-dependent refractive index of silica (the Kerr effect) was introduced by Hasegawa and Tappert in a paper that was submitted on 12 April 1973. In this Perspective we present a brief historical overview of how this prediction developed in light of other technological developments made through the decades, followed by an extensive forward-looking discussion on the most exciting opportunities in soliton research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Soliton concepts, technologies and applications.

Similar content being viewed by others

References

  1. Hasegawa, A. & Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973).

    ADS  Google Scholar 

  2. Zakharov, V. E. & Shabat, A. B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. J. Exp. Theor. Phys. 34, 62–69 (1972).

    ADS  MathSciNet  Google Scholar 

  3. Hasegawa, A. Optical soliton: a memoir of its discovery and future prospects. Opt. Commun. 532, 129222 (2023).

    Google Scholar 

  4. Dudley, J. M., Finot, C., Genty, G. & Taylor, R. Fifty years of fiber solitons. Opt. Photon. News 34, 28–33 (2023).

    Google Scholar 

  5. Agrawal, G. P. Nonlinear Fiber Optics 6th edn (Academic, 2019).

  6. Mollenauer, L. F., Stolen, R. H. & Gordon, J. P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980).

    ADS  Google Scholar 

  7. Mollenauer, L. F., Stolen, R. H., Gordon, J. P. & Tomlinson, W. J. Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers. Opt. Lett. 8, 289–291 (1983).

    ADS  Google Scholar 

  8. Taylor, J. R. Early optical soliton research at Imperial College London. Opt. Commun. 536, 129382 (2023).

    Google Scholar 

  9. Kodama, Y. & Hasegawa, A. Guiding-center soliton in optical fibers. Opt. Lett. 15, 1443–1445 (1990).

    ADS  Google Scholar 

  10. Gordon, J. P. & Haus, H. A. Random walk of coherently amplified solitons in optical fiber transmission. Opt. Lett. 11, 665–667 (1986).

    ADS  Google Scholar 

  11. Suzuki, M. et al. Reduction of Gordon–Haus timing jitter by periodic dispersion compensation in soliton transmission. Electron. Lett. 31, 2027–2029 (1995).

    ADS  Google Scholar 

  12. Smith, N. J., Knox, F. M., Doran, N. J., Blow, K. J. & Bennion, I. Enhanced power solitons in optical fibres with periodic dispersion management. Electron. Lett. 32, 54–55 (1996).

    ADS  Google Scholar 

  13. Gabitov, I. & Turitsyn, S. K. Averaged pulse dynamics in a cascaded transmission system with passive dispersion compensation. Opt. Lett. 21, 327–329 (1996).

    ADS  Google Scholar 

  14. Mollenauer, L. F. & Mamyshev, P. V. Massive wavelength-division multiplexing with solitons. IEEE J. Quantum Electron. 34, 2089–2102 (1998).

    ADS  Google Scholar 

  15. Pratt, A. R. et al. 5,745 km DWDM transcontinental field trial using 10 Gbit/s dispersion managed solitons and dynamic gain equalization. In Optical Fiber Communications Conference PD26-P1 (Optica Publishing Group, 2003).

  16. Gnauck, A. H. et al. 2.5 Tb/s (64 × 42.7 Gb/s) transmission over 40 × 100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans. In Optical Fiber Communication Conference and Exhibit FC2-FC2 (IEEE, 2002).

  17. Hasegawa, A. Soliton-based optical communications: an overview. IEEE J. Sel. Top. Quantum Electron. 6, 1161–1172 (2000).

    ADS  Google Scholar 

  18. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    ADS  Google Scholar 

  19. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    ADS  Google Scholar 

  20. Tamura, K., Ippen, E. P., Haus, H. A. & Nelson, L. E. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt. Lett. 18, 1080–1082 (1993).

    ADS  Google Scholar 

  21. Rozanov, N. N. Dissipative optical solitons. Phys. Usp. 43, 421–424 (2000).

    ADS  Google Scholar 

  22. Akhmediev, N. & Ankiewicz, A. in Dissipative Solitons Vol. 661 (eds Akhmediev, N. & Ankiewicz, A.) 1–17 (Springer, 2005).

  23. Mollenauer, L. F. & Stolen, R. H. The soliton laser. Opt. Lett. 9, 13–15 (1984).

    ADS  Google Scholar 

  24. Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84–92 (2012).

    ADS  Google Scholar 

  25. Wise, F. W., Chong, A. & Renninger, W. H. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photon. Rev. 2, 58–73 (2008).

    ADS  Google Scholar 

  26. Blanco-Redondo, A. et al. Pure-quartic solitons. Nat. Commun. 7, 10427 (2016).

    ADS  Google Scholar 

  27. Runge, A. F. J. et al. Infinite hierarchy of solitons: interaction of Kerr nonlinearity with even orders of dispersion. Phys. Rev. Res. 3, 013166 (2021).

    Google Scholar 

  28. Runge, A. F. J. et al. The pure-quartic soliton laser. Nat. Photon. 14, 492–497 (2020).

    Google Scholar 

  29. Van Howe, J. et al. Soliton self-frequency shift below 1300 nm in higher-order-mode, solid silica-based fiber. Opt. Lett. 32, 340–342 (2007).

    ADS  Google Scholar 

  30. Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures of an intact mouse brain. Nat. Photon. 7, 205–209 (2013).

    ADS  Google Scholar 

  31. Ouzounov, D. G. et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702–1704 (2003).

    ADS  Google Scholar 

  32. Chen, Y.-H., Sidorenko, P., Antonio-Lopez, E., Amezcua-Correa, R. & Wise, F. W. Efficient soliton self-frequency shift in hydrogen-filled hollow-core fiber. Opt. Lett. 47, 285–288 (2022).

    ADS  Google Scholar 

  33. Travers, J. C., Grigorova, T. F., Brahms, C. & Belli, F. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photon. 13, 547–554 (2019).

    ADS  Google Scholar 

  34. Hasegawa, A. Self-confinement of multimode optical pulse in a glass fiber. Opt. Lett. 5, 416–417 (1980).

    ADS  Google Scholar 

  35. Renninger, W. H. & Wise, F. W. Optical solitons in graded-index multimode fibres. Nat. Commun. 4, 1719 (2013).

    ADS  Google Scholar 

  36. Wright, L. G., Christodoulides, D. N. & Wise, F. W. Spatiotemporal mode-locking in multimode fiber lasers. Science 358, 94–97 (2017).

    ADS  Google Scholar 

  37. Petersen, C. R. et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photon. 8, 830–834 (2014).

    ADS  Google Scholar 

  38. Genty, G. et al. Machine learning and applications in ultrafast photonics. Nat. Photon. 15, 91–101 (2021).

    ADS  Google Scholar 

  39. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in Kerr microresonators. Science 361, eaan8083 (2018).

    Google Scholar 

  40. Cole, D. C., Lamb, E., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–677 (2017).

    ADS  Google Scholar 

  41. Rowley, M. et al. Self-emergence of robust solitons in a microcavity. Nature 608, 303–309 (2022).

    ADS  Google Scholar 

  42. Smirnov, S., Sturman, B., Podivilov, E. & Breunig, I. Walk-off controlled self-starting frequency combs in χ(2) optical microresonators. Opt. Express 28, 18006–18017 (2020).

    ADS  Google Scholar 

  43. Taheri, H. & Matsko, A. B. Quartic dissipative solitons in optical Kerr cavities. Opt. Lett. 44, 3086–3089 (2019).

    ADS  Google Scholar 

  44. Blanco-Redondo, A., Dorche, A. E. & Stern, B. Dual-ring resonators for optical frequency comb generation. US patent 11,402,724 (2022).

  45. Yao, S., Liu, K. & Yang, C. Pure quartic solitons in dispersion-engineered aluminum nitride micro-cavities. Opt. Express 29, 8312–8322 (2021).

    ADS  Google Scholar 

  46. Lee, J. H., van Howe, J., Xu, C. & Liu, X. Soliton self-frequency shift: experimental demonstrations and applications. IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).

    ADS  Google Scholar 

  47. Xu, C. & Wise, F. W. Recent advances in fibre lasers for nonlinear microscopy. Nat. Photon. 7, 875–882 (2013).

    ADS  Google Scholar 

  48. Hasegawa, A. & Nyu, T. Eigenvalue communication. J. Lightwave Technol. 11, 395–399 (1993).

    ADS  Google Scholar 

  49. Turitsyn, S. K. et al. Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives. Optica 4, 307–322 (2017).

    ADS  Google Scholar 

  50. Pang, M. et al. All-optical bit storage in a fibre laser by optomechanically bound states of solitons. Nat. Photon. 10, 454–458 (2016).

    ADS  Google Scholar 

  51. Wabnitz, S. Suppression of interactions in a phase-locked soliton optical memory. Opt. Lett. 18, 601–603 (1993).

    ADS  Google Scholar 

  52. Marcucci, G., Pierangeli, D. & Conti, C. Theory of neuromorphic computing by waves: machine learning by rogue waves, dispersive shocks, and solitons. Phys. Rev. Lett. 125, 093901 (2019).

    ADS  Google Scholar 

  53. Malomed, B. A. Bound solitons in the nonlinear Schrödinger–Ginzburg–Landau equation. Phys. Rev. A 44, 6954–6956 (1991).

    ADS  MathSciNet  Google Scholar 

  54. Stratmann, M., Pagel, T. & Mitschke, F. Experimental observation of temporal soliton molecules. Phys. Rev. Lett. 95, 143902 (2005).

    ADS  Google Scholar 

  55. Kuznetsov, E. A. Solitons in a parametrically unstable plasma. Sov. Phys. Dokl. 22, 507–508 (1977).

    ADS  Google Scholar 

  56. Akhmediev, N. & Korneev, V. I. Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089–1093 (1986).

    MATH  Google Scholar 

  57. Zakharov, V. E. & Ostrovsky, L. A. Modulation instability: the beginning. Physica D 238, 540–548 (2009).

    ADS  MathSciNet  MATH  Google Scholar 

  58. Lourdesamy, J. P. et al. Spectrally periodic pulses for enhancement of optical nonlinear effects. Nat. Phys. 18, 59–66 (2022).

    Google Scholar 

  59. Zakharov, V. E. Turbulence in integrable systems. Stud. Appl. Math. 122, 219–234 (2009).

    MathSciNet  MATH  Google Scholar 

  60. Suret, P. et al. Soliton gas: theory, numerics and experiments. Preprint at https://arxiv.org/abs/2304.06541 (2023).

  61. Turitsyna, E. et al. The laminar–turbulent transition in a fibre laser. Nat. Photon. 7, 783–786 (2013).

    ADS  Google Scholar 

  62. Eggleton, B. J., Slusher, R. E., de Sterke, C. M., Krug, P. A. & Sipe, J. E. Bragg grating solitons. Phys. Rev. Lett. 76, 1627–1630 (1996).

    ADS  Google Scholar 

  63. Krupa, K. et al. Multimode nonlinear fiber optics, a spatiotemporal avenue. APL Photon. 4, 110901 (2019).

    ADS  Google Scholar 

  64. Wright, L. G. et al. Physics of highly multimode nonlinear optical systems. Nat. Phys. 18, 1018–1030 (2022).

    Google Scholar 

  65. Silberberg, Y. Collapse of optical pulses. Opt. Lett. 15, 1282–1284 (1990).

    ADS  Google Scholar 

  66. Zitelli, M., Ferraro, M., Mangini, F. & Wabnitz, S. Single-mode spatiotemporal soliton attractor in multimode GRIN fibers. Photon. Res. 9, 741–748 (2021).

    Google Scholar 

  67. Wright, L. G., Wabnitz, S., Christodoulides, D. N. & Wise, F. W. Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves. Phys. Rev. Lett. 115, 223902 (2015).

    ADS  Google Scholar 

  68. Aschieri, P., Garnier, J., Michel, C., Doya, V. & Picozzi, A. Condensation and thermalization of classical optical waves in a waveguide. Phys. Rev. A 83, 033838 (2011).

    ADS  Google Scholar 

  69. Wu, F. O., Hassan, A. U. & Christodoulides, D. N. Thermodynamic theory of highly multimoded nonlinear optical systems. Nat. Photon. 13, 776–782 (2019).

    ADS  Google Scholar 

  70. Philbin, T. G. et al. Fiber-optical analog of the event horizon. Science 319, 1367–1370 (2008).

    ADS  Google Scholar 

  71. Robson, C. W., Di Mauro Villari, L. & Biancalana, F. Topological nature of the Hawking temperature of black holes. Phys. Rev. D 99, 044042 (2019).

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to our many colleagues, with whom we have shared the soliton journey. This paper is dedicated to the memory of Linn Mollenauer, a leading figure in optical fibre soliton experimental science, who passed away on 28 July 2021. When finishing the manuscript, we learned that Vladimir Zakharov, another soliton science pioneer, passed away on 20 August 2023. We acknowledge his profound contributions, which have provided our field with inspiration and with solid mathematical foundations. We thank F. Mangini for help in preparing the figure. C.M.d.S. is supported by the Australian Research Council (ARC) Discovery Project (DP230102200) and the Asian Office of Aerospace R&D (AOARD) (grant no. FA2386-19-1-4067). S.W. is supported by the European Research Council (grant 740355) and the European Union under the Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU, partnership on ‘Telecommunications of the Future’ (PE00000001—program ‘RESTART’). S.K.T. acknowledges support of the Engineering and Physical Sciences Research Council (project EP/W002868/1). C.X. is supported by NIH/NIBIB R01EB033179 and NIH/NINDS U01NS128660.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Blanco-Redondo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks John Travers and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco-Redondo, A., de Sterke, C.M., Xu, C. et al. The bright prospects of optical solitons after 50 years. Nat. Photon. 17, 937–942 (2023). https://doi.org/10.1038/s41566-023-01307-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01307-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing